Real Analysis II.

Instructor: Dmitry Ryabogin

Assignment IV.

1. **Problem 1.** Make a proper change of variables to compute the double integral

\[\int_{A} (y^2 - x^2) \, dx \, dy, \quad A := \{(x, y) \in \mathbb{R}^2 : 0 < x < y, xy < 1, x^2 + y^2 < 4\}. \]

2. **Problem 2.**
 a) Let \(K = [-1, 1]^k \) be the cube in \(\mathbb{R}^k \). Compute the volume of \(K \). What is the length of the main diagonal (the segment joining the points \((-1, -1, ..., -1)\) and \((1, 1, ..., 1)\))?
 b) Prove that the volume of the cube can be written as

\[\text{vol}_k(K) = v_k \int_{S^{k-1}} r(u)^k \, d\sigma(u), \]

where \(r(u) \) is the "radius" of \(K \) in direction \(u \),

\[r(u) := \max\{t > 0 : tu \in K\}. \]

Conclude that the "radius" of \(K \) satisfies

\[\int_{S^{k-1}} r(u)^k \, d\sigma(u) = \frac{2^k}{v_k} \approx \left(\frac{2k}{\pi e} \right)^k, \]

(see 3 g) of the previous assignment), and the "average radius" of \(K \) is about \(\sqrt{2k/\pi e} \). This indicates that the volume of the cube tends to lie in its corners, where the radius close to \(\sqrt{k} \), not in the middle of its facets, where the radius is close to 1.

3. **Problem 2. ”How is the mass of the ball distributed” ?**
 a) Let \(B \) be the ball of volume 1 in \(\mathbb{R}^k \). What is its radius?
 b) The central slice \(A_{e_1}(0) := \{y \in B : y_1 = 0\} \) of \(B \) is an \((k - 1)\)-dimensional ball of the same radius. Prove that the volume of the slice \(\text{vol}_{k-1}(A_{e_1}(0)) = v_{k-1}v_k^{-(k-1)/k} \).
 c) Use

\[\Gamma\left(\frac{k}{2} + 1\right) \approx \sqrt{2\pi e^{-k/2}} \left(\frac{k}{2}\right)^{(k+1)/2}. \]

\(\Gamma \) to find that \(\text{vol}_{k-1}(A_{e_1}(0)) \approx e \) for large \(k \).
 d) Prove that a parallel slice having a distance \(t \) from the origin

\[A_{e_1}(t) = \{y \in B : y_1 = t\} \]
has a volume

\[\text{vol}_{k-1}(A_{e_1}(t)) \approx \sqrt{\frac{e}{r^2}} \left(1 - \frac{t^2}{r^2} \right)^{(k-1)/2}, \]

where \(r \) is the radius of \(B \).

e) Since \(r \approx \sqrt{k/(2\pi e)} \), prove that

\[\text{vol}_{k-1}(A_{e_1}(t)) \approx \sqrt{e} e^{-\pi et^2}. \]

f) Draw the graph of \(f(t) := \text{vol}_{k-1}(A_{e_1}(t)) \) and observe that it does not depend on the dimension. Conclude that the volume of the ball concentrates close to \textbf{any} subspace of dimension \(k - 1 \).

g) The part f) suggests that the volume concentrates near the center of the ball, where the subspaces all meet. On the other hand, prove that, for \(k \) large, most of the volume of \(B \) lies near its surface. How do you explain this phenomena?

4. Problem 3.

a) Let

\[h_\lambda(x) = \frac{2}{\pi} \frac{\lambda}{\lambda^2 + x^2}, \quad \lambda > 0. \]

Prove that

\[\int_R h_\lambda(x) \, dx = 1 \quad \forall \lambda > 0. \]

b) Let \(g \) be a bounded function. Prove that

\[\lim_{\lambda \to 0} g * h_\lambda(x) = g(x), \]

provided \(g \) is continuous at \(x \).

c) Let \(g \) be integrable on \(R \). Prove that

\[\lim_{\lambda \to 0} \int_R |g * h_\lambda(x) - g(x)| \, dx = 0. \]