Real Analysis II.

Instructor: Dmitry Ryabogin

Assignment IV.

1. Problem 1. Make a proper change of variables to compute the double integral

$$
\int_{A}\left(y^{2}-x^{2}\right) d x d y, \quad A:=\left\{(x, y) \in R^{2}: 0<x<y, x y<1, x^{2}+y^{2}<4\right\} .
$$

2. Problem 2.

a) Let $K=[-1,1]^{k}$ be the cube in R^{k}. Compute the volume of K. What is the length of the main diagonal (the segment joining the points $(-1,-1, \ldots,-1)$ and $(1,1, \ldots, 1))$?
b) Prove that the volume of the cube can be written as

$$
\operatorname{vol}_{k}(K)=v_{k} \int_{S^{k-1}} r(u)^{k} d \sigma(u),
$$

where $r(u)$ is the "radius" of K in direction u,

$$
r(u):=\max \{t>0: t u \in K\} .
$$

Conclude that the "radius" of K satisfies

$$
\int_{S^{k-1}} r(u)^{k} d \sigma(u)=\frac{2^{k}}{v_{k}} \approx\left(\frac{2 k}{\pi e}\right)^{k}
$$

(use 3 g) of the previous assignment), and the "average radius" of K is about $\sqrt{2 k / \pi e}$. This indicates that the volume of the cube tends to lie in its corners, where the radius close to \sqrt{k}, not in the middle of its facets, where the radius is close to 1 .

3. Problem 2. "How is the mass of the ball distributed"?

a) Let B be the ball of volume 1 in R^{k}. What is its radius?
b) The central slice $A_{e_{1}}(0):=\left\{y \in B: y_{1}=0\right\}$ of B is an $(k-1)$-dimensional ball of the same radius. Prove that the volume of the slice $\operatorname{vol}_{k-1}\left(A_{e_{1}}(0)\right)=v_{k-1} v_{k}^{-(k-1) / k}$.
c) Use

$$
\Gamma\left(\frac{k}{2}+1\right) \approx \sqrt{2 \pi} e^{-k / 2}\left(\frac{k}{2}\right)^{(k+1) / 2}
$$

to find that $v o l_{k-1}\left(A_{e_{1}}(0)\right) \approx e$ for large k.
d) Prove that a parallel slice having a distance t from the origin

$$
A_{e_{1}}(t)=\left\{y \in B: y_{1}=t\right\}
$$

has a volume

$$
\operatorname{vol}_{k-1}\left(A_{e_{1}}(t)\right) \approx \sqrt{e}\left(1-\frac{t^{2}}{r^{2}}\right)^{(k-1) / 2}
$$

where r is the radius of B.
e) Since $r \approx \sqrt{k /(2 \pi e)}$, prove that

$$
\operatorname{vol}_{k-1}\left(A_{e_{1}}(t)\right) \approx \sqrt{e} e^{-\pi e t^{2}}
$$

f) Draw the graph of $f(t):=\operatorname{vol}_{k-1}\left(A_{e_{1}}(t)\right)$ and observe that it does not depend on the dimension. Conclude that the volume of the ball concentrates close to any subspace of dimension $k-1$.
g) The part f) suggests that the volume concentrates near the center of the ball, where the subspaces all meet. On the other hand, prove that, for k large, most of the volume of B lies near its surface. How do you explain this phenomena?

4. Problem 3.

a) Let

$$
h_{\lambda}(x)=\frac{2}{\pi} \frac{\lambda}{\lambda^{2}+x^{2}}, \quad \lambda>0
$$

Prove that

$$
\int_{R} h_{\lambda}(x) d x=1 \quad \forall \lambda>0
$$

b) Let g be a bounded function. Prove that

$$
\lim _{\lambda \rightarrow 0} g * h_{\lambda}(x)=g(x)
$$

provided g is continuous at x.
c) Let g be integrable on R. Prove that

$$
\lim _{\lambda \rightarrow 0} \int_{R}\left|g * h_{\lambda}(x)-g(x)\right| d x=0
$$

