Real Analysis.

Instructor: Dmitry Ryabogin

Assignment VI.

1. Problem 1.

a) Let K be a convex origin-symmetric set in R^{n}. Define the polar body K^{*} of K as $K^{*}:=\left\{x \in \mathbf{R}^{n}: x \cdot y \leq 1 \forall y \in K\right\}$. Prove that $\left(K^{*}\right)^{*}=K$.

Hint. To show that $\left(K^{*}\right)^{*} \subseteq K$ assume the contrary: there exists $x \in\left(K^{*}\right)^{*} \backslash K$. Prove that there exists a hyperplane $H_{\alpha, u}:=\left\{y \in R^{n}: y \cdot u=\alpha\right\}$, such that K lies in a half-space $\left\{y \in R^{n}: y \cdot u \leq \alpha\right\}$, and $x \in\left\{y \in R^{n}: y \cdot u>\alpha\right\}$. What can you say about $z=u / \alpha$?
b) Let f be a differentiable function in R^{n}, homogeneous of degree m, that is $g(t x)=$ $t^{m} g(x)$ for every $t>0$. Prove Euler's formula: $m g(x)=\nabla g(x) \cdot x$.
c) Assume that a convex body K is such that its support function h_{K} is differentiable in $R^{n} \backslash\{0\}$. Prove that $h_{K}(x)=\nabla h_{K}(x) \cdot x$. Conclude that $\nabla h_{K}(x)$ belongs to a tangent plane $H:=\left\{y \in R^{n}: y \cdot x=h_{K}(x)\right\}$ to K at the point $\nabla h_{K}(x)$.
d) Use convexity of K to prove that for every $x, y \in K^{*}, \nabla h_{K}(x) \cdot x \geq \nabla h_{K}(x) \cdot y$.
e) Use $h_{K}(x)=\nabla h_{K}(x) \cdot x$ of c) and a) to prove $\nabla h_{K}(x) \in\left(K^{*}\right)^{*}=K$. Conclude that $\nabla h_{K}(x) \in K \cap H$.

2. Problem 2.

a) Let K be a convex origin-symmetric body in $R^{n}, \rho_{K}(x):=\max \{\lambda>0: \lambda x \in K\}$ be the distance function of K and let $A \in G L(n)$ (an invertible linear transformation from R^{n} to $\left.R^{n}\right)$. Prove that $\rho_{A K}(x)=\rho_{K}\left(A^{-1} x\right)$.
b) Let A, K be as in a). Prove that $h_{A K}(x)=h_{K}\left(A^{t} x\right)$, where A^{t} is a conjugate operator, defined as $A x \cdot y=x \cdot A^{t} y$.
c) Use $\rho_{K^{*}}(u)=1 / h_{K}(u), u \in S^{n-1}$, to show that $h_{(A K)^{*}}(u)=h_{\left(A^{-1}\right)^{t} K^{*}}(u)$. Conclude that $(A K)^{*}=\left(A^{-1}\right)^{t} K^{*}$.
d) Conclude that for any $A \in G L(n), \operatorname{vol}_{n}(A K) \operatorname{vol}_{n}\left((A K)^{*}\right)=\operatorname{vol}_{n}(K) \operatorname{vol}_{n}\left(K^{*}\right)$.
$\mathrm{e})^{* *)}$
Prove that for any K,

$$
\operatorname{vol}_{n}(K) \operatorname{vol}_{n}\left(K^{*}\right) \geq \operatorname{vol}_{n}\left(B_{1}^{n}\right) \operatorname{vol}_{n}\left(B_{\infty}^{n}\right)=\frac{4^{n}}{n!}
$$

Hint. I have no clue.

3. Problem 3.

a) Let K, L be two convex origin-symmetric bodies in R^{n}. Prove that

$$
(K \cap L)^{*}=\cup_{\theta \in[0,1]}\left((1-\theta) K^{*}+\theta L^{*}\right) .
$$

b) Prove that $\left(B_{n}^{2}\right)^{*}=B_{n}^{2}$.
c) Let $K:=\left\{x \in \mathbf{R}^{n}: \sum_{k=1}^{n}\left|x_{k}\right|^{2} / a_{k}^{2} \leq 1, a_{k}>0\right\}$ be an ellipsoid. Find K^{*}.
d) Let $1 \leq p<\infty$, and let $B_{n}^{p}:=\left\{x \in \mathbf{R}^{n}: \sum_{k=1}^{n}\left|x_{k}\right|^{p} \leq 1\right\}, B_{n}^{\infty}:=\left\{x \in \mathbf{R}^{n}\right.$: $\left.\sup _{k=1, \ldots, n}\left|x_{k}\right| \leq 1\right\}$.
Prove that $\left(B_{n}^{p}\right)^{*}=B_{n}^{q}$, where $1 / p+1 / q=1$.
Hint. You might want to use the Lagrange multipliers. Then define

$$
F_{x}(y):=x \cdot y-\lambda\left(\sum_{k=1}^{n} y_{k}^{p}-1\right), \quad \lambda>0 .
$$

Then (we might assume that $y_{i}, x_{i}>0$, we also assume that y is precisely the point on the boundary where the max is achieved)

$$
\frac{\partial F}{\partial y_{i}}=0, \frac{\partial F}{\partial \lambda}=0, \text { or } x_{i}=\lambda p y_{i}^{p-1}, \sum_{k=1}^{n} y_{k}^{p}=1 .
$$

Rising the first equation to the power $p /(p-1)$ and summing up in i, we see that the second condition implies

$$
\sum_{i=1}^{n} x_{i}^{p /(p-1)}=(\lambda p)^{p /(p-1)}, \quad\left(\sum_{i=1}^{n} x_{i}^{p /(p-1)}\right)^{(p-1) / p}=\lambda p .
$$

But,

$$
\sum_{i=1}^{n} y_{i} x_{i}=\lambda p \sum_{i=1}^{n} y_{i}^{p}=\lambda p
$$

and

$$
h_{B_{n}^{p}}(x)=x \cdot y=\left(\sum_{i=1}^{n} x_{i}^{p /(p-1)}\right)^{(p-1) / p}, \quad x \in S^{n-1} .
$$

Observe that we have a maximum:

$$
\frac{\partial^{2} F}{\partial y_{i} \partial y_{j}}=0, \quad j \neq i, \quad \frac{\partial^{2} F}{\partial y_{i}^{2}}=-\mu p(p-1) y_{i}^{p-2}<0 .
$$

