Real Analysis.

Instructor: Dmitry Ryabogin

Assignment VII.

1. Problem 1.

a) Let $\mu(X) = 1$, and suppose f and g are positive measurable functions on X such that $fg \ge 1$. Prove that

$$\int_X f d\mu \int_X g d\mu \ge 1.$$

b) Let X and μ be as above, and let $h \ge 0$ be measurable. If $A = \int_X h d\mu$, prove that

$$\sqrt{1+A^2} \le \int\limits_X \sqrt{1+h^2} d\mu \le 1+A.$$

2. Problem 2.

a) Suppose μ is a positive measure on X and a positive f satisfies $\int_X f d\mu = 1$. Prove that, for every $E \subset X$ with $0 < \mu(E) < \infty$, that

$$\int_{E} logf d\mu \le \mu(E) log \frac{1}{\mu(E)}.$$

b) If f is a positive measurable function on [0, 1], which is larger,

$$\int_{0}^{1} f(x) log f(x) dx, \qquad or \qquad \int_{0}^{1} f(x) dx \int_{0}^{1} log f(x) dx?$$

3. Problem 3. Suppose $1 , <math>f \in L^p = L^p((0,\infty))$, relative to the Lebesgue measure, and

$$F(x) := \frac{1}{x} \int_{0}^{x} f(t)dt, \qquad x \in (0,\infty).$$

a) Prove the Hardy inequality

$$||F||_p \le \frac{p}{p-1} ||f||_p$$

which is that the mapping $f \to F$ carries L^p into L^p .

Hint. Write

$$xF(x) = \int_{0}^{x} f(t)t^{\alpha}t^{-\alpha}dt, \qquad 0 < \alpha < 1/q.$$

use Holder's inequality to get an upper bound for $F^{p}(x)$, and integrate to obtain

$$\int_{0}^{\infty} F^{p}(x)dx \leq (1-\alpha q)^{1-p}(\alpha p)^{-1} \int_{0}^{\infty} f^{p}(t)dt.$$

b) Show that the best choice of α yields

$$\int_{0}^{\infty} F^{p}(x) dx \le \left(\frac{p}{p-1}\right)^{p} \int_{0}^{\infty} f^{p}(t) dt.$$

c) Prove that the constant p/(p-1) cannot be replaced by a smaller one.

Hint. Take $f(x) = x^{-1/p}$ on [1, A], f(x) = 0 elsewhere, for large A.

- d) If f > 0, and $f \in L^1$, prove that $F \notin L^1$.
- e) Prove that if

$$\int_{0}^{\infty} f(t)dt = 0, \qquad \int_{0}^{\infty} |f(t)log|t| |dt < \infty,$$

then $F \in L^1$.

4. **Problem 4.** Suppose μ is a positive measure on X, $\mu(X) < \infty$, $f \in L^{\infty}(\mu, X)$, $\|f\|_{\infty} > 0$, and $\alpha_n := \int_X |f(x)|^n d\mu$, $n \in \mathbb{N}$. Prove that $\lim_{n \to \infty} \alpha_{n+1}/\alpha_n = \|f\|_{\infty}$.

Hint.

a) Prove that for **any** sequence of positive numbers $(\alpha_n)_{n=1}^{\infty}$, $\lim_{n \to \infty} \alpha_{n+1}/\alpha_n = \lim_{n \to \infty} \alpha_n^{1/n}$, provided the first limit exists.

b) Using Holder's inequality prove that the limit $\lim_{n\to\infty} \alpha_{n+1}/\alpha_n$, $\alpha_n := \int_X |f(x)|^n d\mu$, exists.

c) Use $||f||_n \to ||f||_\infty$ as $n \to \infty$ and a), b).