Real Analysis.

Instructor: Dmitry Ryabogin
 Assignment VII.

1. Problem 1.

a) Let $\mu(X)=1$, and suppose f and g are positive measurable functions on X such that $f g \geq 1$. Prove that

$$
\int_{X} f d \mu \int_{X} g d \mu \geq 1
$$

b) Let X and μ be as above, and let $h \geq 0$ be measurable. If $A=\int_{X} h d \mu$, prove that

$$
\sqrt{1+A^{2}} \leq \int_{X} \sqrt{1+h^{2}} d \mu \leq 1+A
$$

2. Problem 2.

a) Suppose μ is a positive measure on X and a positive f satisfies $\int_{X} f d \mu=1$. Prove that, for every $E \subset X$ with $0<\mu(E)<\infty$, that

$$
\int_{E} \log f d \mu \leq \mu(E) \log \frac{1}{\mu(E)}
$$

b) If f is a positive measurable function on $[0,1]$, which is larger,

$$
\int_{0}^{1} f(x) \log f(x) d x, \quad \text { or } \quad \int_{0}^{1} f(x) d x \int_{0}^{1} \log f(x) d x ?
$$

3. Problem 3. Suppose $1<p<\infty, f \in L^{p}=L^{p}((0, \infty))$, relative to the Lebesgue measure, and

$$
F(x):=\frac{1}{x} \int_{0}^{x} f(t) d t, \quad x \in(0, \infty)
$$

a) Prove the Hardy inequality

$$
\|F\|_{p} \leq \frac{p}{p-1}\|f\|_{p}
$$

which is that the mapping $f \rightarrow F$ carries L^{p} into L^{p}.

Hint. Write

$$
x F(x)=\int_{0}^{x} f(t) t^{\alpha} t^{-\alpha} d t, \quad 0<\alpha<1 / q,
$$

use Holder's inequality to get an upper bound for $F^{p}(x)$, and integrate to obtain

$$
\int_{0}^{\infty} F^{p}(x) d x \leq(1-\alpha q)^{1-p}(\alpha p)^{-1} \int_{0}^{\infty} f^{p}(t) d t
$$

b) Show that the best choice of α yields

$$
\int_{0}^{\infty} F^{p}(x) d x \leq\left(\frac{p}{p-1}\right)^{p} \int_{0}^{\infty} f^{p}(t) d t
$$

c) Prove that the constant $p /(p-1)$ cannot be replaced by a smaller one.

Hint. Take $f(x)=x^{-1 / p}$ on $[1, A], f(x)=0$ elsewhere, for large A.
d) If $f>0$, and $f \in L^{1}$, prove that $F \notin L^{1}$.
e) Prove that if

$$
\int_{0}^{\infty} f(t) d t=0, \quad \int_{0}^{\infty}|f(t) \log | t| | d t<\infty
$$

then $F \in L^{1}$.
4. Problem 4. Suppose μ is a positive measure on $X, \mu(X)<\infty, f \in L^{\infty}(\mu, X)$, $\|f\|_{\infty}>0$, and $\alpha_{n}:=\int_{X}|f(x)|^{n} d \mu, n \in \mathbf{N}$. Prove that $\lim _{n \rightarrow \infty} \alpha_{n+1} / \alpha_{n}=\|f\|_{\infty}$.

Hint.

a) Prove that for any sequence of positive numbers $\left(\alpha_{n}\right)_{n=1}^{\infty}, \lim _{n \rightarrow \infty} \alpha_{n+1} / \alpha_{n}=\lim _{n \rightarrow \infty} \alpha_{n}^{1 / n}$, provided the first limit exists.
b) Using Holder's inequality prove that the limit $\lim _{n \rightarrow \infty} \alpha_{n+1} / \alpha_{n}, \alpha_{n}:=\int_{X}|f(x)|^{n} d \mu$, exists.
c) Use $\|f\|_{n} \rightarrow\|f\|_{\infty}$ as $n \rightarrow \infty$ and a), b).

