Real Analysis.

Instructor: Dmitry Ryabogin

Assignment IX.

1. Problem 1.

a) Show that the vectors $(x_j)_{j=1}^n$ in H are linearly independent, provided they are pairwise orthogonal.

b) Prove that x = 0 iff (x, y) = 0 for all $y \in H$.

2. Problem 2.

Let H be a space of complex polynomials of degree $\leq n$.

- a) Show that the dimension of H is n + 1.
- b) Let $\lambda_0 < \lambda_1 < ... < \lambda_n$ be constants. Define

$$(P,Q) = \sum_{j=0}^{n} P(\lambda_j) \overline{Q(\lambda_j)}.$$

Prove that this is a scalar product, and prove that H is a Hilbert space with respect to it.

3. Problem 3. Matrices of Hilbert-Schmidt.

Let M be a collection of all infinite matrices over complex numbers, $\mathbf{a} = ((a(i, j))_{1 \le i, j < \infty},$ such that a(i, j) = 0 for $n(\mathbf{a}) = n < max\{i, j\}$, (all terms a(i, j) are zero except for finitely many terms).

a) Prove that M is a linear space with respect to usual operations, and that one can define a multiplication in M.

Define a **trace** of $\mathbf{a} \in M$ as follows

$$tr \mathbf{a} = \sum_{i} a(i, i).$$

b) Let α, β be complex numbers, and let $\mathbf{a}, \mathbf{b} \in M$. Prove that

$$tr \mathbf{ab} = tr \mathbf{ba};$$
 $tr \mathbf{a}^* \mathbf{a} \ge 0;$ $tr (\alpha \mathbf{a} + \beta \mathbf{b}) = \alpha tr \mathbf{a} + \beta tr \mathbf{b}.$

Here $\mathbf{a}^* = (\overline{(a(j,i))})_{1 \le i,j < \infty}$. For $\mathbf{a}, \mathbf{b} \in M$ define

$$(\mathbf{a}, \mathbf{b}) = tr \mathbf{ab}^*.$$

c) Prove that this is a scalar product, and that

$$(\mathbf{a}, \mathbf{b}) = \sum_{ij} a(i, j) \overline{b(i, j)}.$$

d^{*}) Show that, if we complete M with respect to this scalar product, we will get a collection of infinite matrices for which

$$\sum_{ij} |a(i,j)|^2 < \infty.$$

4. Problem 4*. Prove that the algebraic dimension of l^2 is 2^{\aleph_0} .

Hint: To get a lower bound look at a collection $(x_t)_{0 \le t < 1}$, $x_t = (1, t, t^2, t^3, ..., t^k, ...)$, and use the **determinant of Vandermonde**.

5. **Problem 5.** Give a precise formula for the projection $P_C(x) := dist(x, C)$.

a) C = B(z, r),

b)

 $C = \{ x \in l^2 : x_{i_k} = \lambda_k, \ k = 1, 2, 3, \ldots \}, \qquad (\lambda_k)_{k=1}^{\infty} \in l^2,$

where i_k is an increasing sequence of of natural numbers.

c) C is a collection of all real non-negative (up to a set of measure zero) functions in $L^2([0,1])$.