Real Analysis.

Instructor: Dmitry Ryabogin

Assignment IX.

1. Problem 1.

a) Show that the vectors $\left(x_{j}\right)_{j=1}^{n}$ in H are linearly independent, provided they are pairwise orthogonal.
b) Prove that $x=0$ iff $(x, y)=0$ for all $y \in H$.

2. Problem 2.

Let H be a space of complex polynomials of degree $\leq n$.
a) Show that the dimension of H is $n+1$.
b) Let $\lambda_{0}<\lambda_{1}<\ldots<\lambda_{n}$ be constants. Define

$$
(P, Q)=\sum_{j=0}^{n} P\left(\lambda_{j}\right) \overline{Q\left(\lambda_{j}\right)}
$$

Prove that this is a scalar product, and prove that H is a Hilbert space with respect to it.

3. Problem 3. Matrices of Hilbert-Schmidt.

Let M be a collection of all infinite matrices over complex numbers, $\mathbf{a}=\left((a(i, j))_{1 \leq i, j<\infty}\right.$, such that $a(i, j)=0$ for $n(\mathbf{a})=n<\max \{i, j\}$, (all terms $a(i, j)$ are zero except for finitely many terms).
a) Prove that M is a linear space with respect to usual operations, and that one can define a multiplication in M.
Define a trace of $\mathbf{a} \in M$ as follows

$$
\operatorname{tr} \mathbf{a}=\sum_{i} a(i, i) .
$$

b) Let α, β be complex numbers, and let $\mathbf{a}, \mathbf{b} \in M$. Prove that

$$
\operatorname{tr} \mathbf{a b}=\operatorname{tr} \mathbf{b} \mathbf{a} ; \quad \operatorname{tr} \mathbf{a}^{*} \mathbf{a} \geq 0 ; \quad \operatorname{tr}(\alpha \mathbf{a}+\beta \mathbf{b})=\alpha \operatorname{tr} \mathbf{a}+\beta \operatorname{tr} \mathbf{b} .
$$

Here $\mathbf{a}^{*}=(\overline{(a(j, i)})_{1 \leq i, j<\infty}$.
For $\mathbf{a}, \mathbf{b} \in M$ define

$$
(\mathbf{a}, \mathbf{b})=\operatorname{tr} \mathbf{a b}^{*}
$$

c) Prove that this is a scalar product, and that

$$
(\mathbf{a}, \mathbf{b})=\sum_{i j} a(i, j) \overline{b(i, j)} .
$$

d^{*}) Show that, if we complete M with respect to this scalar product, we will get a collection of infinite matrices for which

$$
\sum_{i j}|a(i, j)|^{2}<\infty .
$$

4. Problem 4*. Prove that the algebraic dimension of l^{2} is $2^{\aleph_{0}}$.

Hint: To get a lower bound look at a collection $\left(x_{t}\right)_{0 \leq t<1}, x_{t}=\left(1, t, t^{2}, t^{3}, \ldots, t^{k}, \ldots\right)$, and use the determinant of Vandermonde.
5. Problem 5. Give a precise formula for the projection $P_{C}(x):=\operatorname{dist}(x, C)$.
a) $C=B(z, r)$,
b)

$$
C=\left\{x \in l^{2}: x_{i_{k}}=\lambda_{k}, k=1,2,3, \ldots\right\}, \quad\left(\lambda_{k}\right)_{k=1}^{\infty} \in l^{2}
$$

where i_{k} is an increasing sequence of of natural numbers.
c) C is a collection of all real non-negative (up to a set of measure zero) functions in $L^{2}([0,1])$.

