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A bounded domain K ⊂ Rn is called polynomially integrable if the (n − 1)-
dimensional volume of the intersection K with a hyperplane Π polynomially depends 
on the distance from Π to the origin. It was proved in [7] that there are no such do-
mains with smooth boundary if n is even, and if n is odd then the only polynomially 
integrable domains with smooth boundary are ellipsoids. In this article, we modify 
the notion of polynomial integrability for even n and consider bodies for which the 
sectional volume function is a polynomial up to a factor which is the square root 
of a quadratic polynomial, or, equivalently, the Hilbert transform of this function 
is a polynomial. We prove that ellipsoids in even dimensions are the only convex 
infinitely smooth bodies satisfying this property.

© 2023 Elsevier Inc. All rights reserved.

1. Formulation of the problem and the main result

The following notion was introduced in [1].

Definition 1.1. Let K be a bounded domain in Rn. Then K is called polynomially integrable if the Radon 
transform of its characteristic function

AK(ξ, t) = RχK(ξ, t) =
∫

K∩{x·ξ=t}

dx, ξ ∈ Sn−1, t ∈ R,
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is a polynomial in t:

AK(ξ, t) =
N∑
j=0

aj(ξ)tj

for t such that the hyperplane x · ξ = t intersects K.

Polynomially integrable domains with C∞ boundary were fully characterized in [1], [7]. First, there are 
no such domains in Rn with even n. Secondly, if n is odd then ellipsoidal domains exhaust the class of such 
domains:

Theorem 1.2 ([7]). Let K be a bounded domain in Rn with an infinitely smooth boundary ∂K. If K is 
polynomially integrable then n is odd and K is an ellipsoid.

Remark 1.3. Theorem 1.2 was formulated in [7] for convex bodies K. However, it was proved in [1] that 
polynomially integrable domains in R2k+1, with smooth boundary, are necessarily convex and thus the 
convexity assumption in Theorem 1.2 is superfluous. Also, when K is a convex body, the function AK(ξ, t)
is continuous with respect to ξ, which implies that the coefficients aj(ξ) are a priori continuous functions 
on the unit sphere.

In this article, we introduce an analogue of polynomial integrability in even dimensions. First of all, there 
are no polynomially integrable convex domains with smooth boundary in even-dimensional spaces. This 
was proved in [1] and [7] using different arguments. The proof in [1] relies on the behavior of the sectional 
volume function AK(ξ, t) near the tangent plane Ta(∂K) = {x · ξ = t0} to the boundary at a point a ∈ ∂K

(see Lemma 2.2). The argument is as follows: for almost all normal vectors ξ ∈ Sn−1 near the tangent plane 
we have AK(ξ, t) = const (t − t0)

n−1
2 (1 + o(1)), t → t0. If n is even then n−1

2 is half-integer and therefore 
AK(ξ, t) cannot be a polynomial in t.

In order to formulate the main result of the article we need some notations. The support functions of a 
compact convex body K ⊂ Rn are defined by

h+
K(ξ) = hK(ξ) = max

x∈K
x · ξ, (1)

h−
K(ξ) = min

x∈K
x · ξ, (2)

where ξ belongs to the unit sphere Sn−1 in Rn. Clearly, h−
K(ξ) = −h+

K(−ξ) and a hyperplane {x · ξ = t}
meets the interior of K if and only if t ∈ Iξ :=

(
h−
K(ξ), h+

K(ξ)
)
.

Denote by H the Hilbert transform

Hf(t) = 1
π
p.v.

∫
R

f(s)
t− s

ds (3)

of a continuous function f with sufficiently fast decay at infinity.
The main result of this article is as follows.

Theorem 1.4. Let n be an even positive integer. Let K be a bounded convex domain in Rn with C∞ boundary 
∂K. The following are equivalent:

(i) The sectional volume function AK(ξ, t) has for t ∈ Iξ the form

AK(ξ, t) =
√
q(ξ, t)P (ξ, t),
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where P (ξ, t), q(ξ, t) are continuous in ξ and polynomials in t with deg q(ξ, ·) = 2; q(ξ, t) > 0, t ∈ Iξ.
(ii) The sectional volume function A(ξ, t) has for t ∈ Iξ the form

AK(ξ, t) = P (ξ, t)√
q(ξ, t)

,

where P (ξ, t), q(ξ, t) are as in (i).
(iii) The Hilbert transform HAK(ξ, t) is a polynomial with respect to t ∈ Iξ for each ξ ∈ Sn−1, i.e.,

HAK(ξ, t) =
N∑
j=0

bj(ξ)tj ,

where N is an integer and bj are some (a priori continuous) functions on the unit sphere.
(iv) K is an ellipsoid.

2. Proof of Theorem 1.4. Equivalence of conditions (i), (ii), (iii)

We start with some preliminary facts.

2.1. Boundary behavior of the sectional volume function

In the case where K is an ellipsoid, the support function hK(ξ) is the restriction to the unit sphere |ξ| = 1
of the square root of a quadratic polynomial. In fact, for the ellipsoid E written in suitable coordinates in 
the standard form

E =

⎧⎨⎩
n∑

j=1

x2
j

a2
j

≤ 1

⎫⎬⎭
we have

hE(ξ) =

√√√√ n∑
j=1

a2
jξ

2
j .

Also one can check that

AE(ξ, t) = CnVoln(E)h−n
E (ξ)

(
h2
E(ξ) − t2

)(n−1)/2
, (4)

for a certain constant Cn, and all ξ and t such that x · ξ = t intersects E. It follows that if n is odd 
then AK(ξ, t) is a polynomial in t and if n is even then AK(ξ, t) has the form (ii) in Theorem 1.4 with 
q(ξ, t) = h2

E(ξ) − t2.
A hyperplane {x · ξ = t} meets the domain K if and only if t ∈ Iξ = [h−

K(ξ), h+
K(ξ)] and the end points 

t = h±
K(ξ) of the segment Iξ correspond to the tangent hyperplanes

Ta±(∂K) = {x · ξ = h±
K(ξ)}

at the points a± ∈ ∂K such that the exterior unit normal vectors ν∂K(a±) are correspondingly ν∂K(a±) =
±ξ.

The behavior of the sectional volume function AK(ξ, t) near the tangent planes is given by the following 
Lemma (see [3, Ch. 1, Section 1.7], [1, Section 3, p. 7], [2, Lemma 2.2]).
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Lemma 2.1. There is a dense subset Σ ⊂ Sn−1, such that the following asymptotic relation with respect to 
t holds with some nonzero coefficients c±(ξ), non-vanishing for ξ ∈ ±Σ, correspondingly:

AK(ξ, t) = c+(ξ)(h+
K(ξ) − t)

n−1
2 (1 + o(1)), t → h+

K(ξ) − 0, ξ ∈ Σ, (5)

AK(ξ, t) = c−(ξ)(t− h−
K(ξ))

n−1
2 (1 + o(1)), t → h−

K(ξ) + 0, ξ ∈ −Σ. (6)

Proof. We will use the notation Γ = ∂K. Then Γ is an infinitely differentiable closed hypersurface. Let 
κΓ(a), a ∈ Γ be the Gaussian curvature of Γ at the point a.

Denote by γ the Gauss mapping

γ : Γ � a → νΓ(a) ∈ Sn−1,

which maps a point a ∈ Γ to the exterior unit normal vector γ(a) = νΓ(a) to Γ at the point a. The mapping 
γ is differentiable and the Gaussian curvature κΓ(a) is equal to the Jacobian determinant κΓ(a) = Jγ(a) of 
γ at the point a. Therefore, the points a with κγ(a) �= 0 (non-degenerate points) constitute the set Regγ
of regular points of the mapping γ, while the set of points a of zero Gaussian curvature coincides with the 
critical set Critγ .

By Sard’s theorem (see e.g., [8, Sections 2 and 3]), the set γ(Critγ) has the Lebesgue measure zero on 
Sn−1, while the set

Σ = Sn−1 \ γ(Critγ)

of regular values is a dense subset of Sn−1. It consists of the unit vectors ξ such that any point a ∈ Γ with 
νΓ(a) = ξ is non-degenerate.

Let ξ ∈ Σ and let a ∈ Γ be such that a · ξ = h+
K(ξ). The hyperplane x · ξ = h+

K(a) is tangent to Γ
and hence the external normal unit vector γ(a) = νΓ(a) = ξ. Since ξ is a regular value of γ, the point a
is non-degenerate, i.e., κΓ(a) �= 0. Applying a suitable translation and an orthogonal transformation, we 
can make a = 0 and ξ = (0, . . . , 0, 1). Then the tangent plane Ta(Γ) is the coordinate plane xn = 0 and 
the domain K is contained in the half-space xn ≤ 0. In this case h+

K(ξ) = 0. Moreover, after performing a 
suitable non-degenerate linear transformation we can make the equation of Γ, near a = 0, to be:

xn = −1
2
(
c1x

2
1 + · · · + cn−1x

2
n−1

)
+ o

(
|x′|2

)
, (x1, . . . , xn−1) = x′ → 0. (7)

The new axes xj , j = 1, . . . , n −1, are the directions of the vectors of principal curvatures and the coefficients 
cj are the values of the principal curvatures at the point a = 0 ∈ Γ. The Gaussian curvature at a = 0 is 
κΓ(0) = c1 · · · cn−1. All the applied transformations preserve regular points, hence κΓ(0) �= 0. Therefore, 
none of cj ’s are equal to zero, and, since cj ≥ 0 due to the convexity of Γ, we have cj > 0 for all j.

After the above transformations we have ξ = (0, . . . , 0, 1), so the hyperplane x · ξ = t is now given by the 
equation xn = t, with t < 0. The main term of Voln−1(K ∩ {xn = t}) near t = 0 is determined by the main 
term of the expansion (7), i.e., by the volume of the ellipsoid −2t = c1x

2
1 + · · · + cn−1x

2
n−1, which is equal 

to c(−t)n−1
2 , where c = (2π)

n−1
2

Γ(n+1
2 )

√
κΓ(a) .

Thus, for the specific choice a = 0 and ξ = (0, . . . , 0, 1), we have the following asymptotic formula:

AK(ξ, t) = Voln−1(K ∩ {xn = t}) = c (−t)
n−1

2 + o(|t|n−1
2 ), t → −0,

near (ξ, t0) with ξ = (0, 0, ..., 0, 1) and t0 = h+
K(ξ) = 0. Performing the inverse affine transformation, we 

obtain the first asymptotic formula in Lemma 2.1, with some new nonzero constant c+ depending, of course, 
on ξ.
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The second asymptotic relation follows from the first one and from the relations h+
K(−ξ) = −h−

K(ξ), 
AK(−ξ, −t) = AK(ξ, t). �

Lemma 2.1 implies an explicit form of the quadratic polynomial q in conditions (i), (ii) of Theorem 1.4, 
as follows:

Lemma 2.2. Let n ≥ 2 be an even integer, and let K be a bounded convex body in Rn with C∞ boundary 
∂K. Let q(ξ, t) be a quadratic polynomial of t in condition (i) or in condition (ii) of Theorem 1.4. Then 
q(ξ, t) = q0(ξ)

(
h+
K(ξ) − t

)(
t − h−

K(ξ)
)
.

Proof. Let n = 2m. Let us start with the case (ii):

√
q(ξ, t)AK(ξ, t) = P (ξ, t), (8)

where P is a polynomial in t.
By Lemma 2.1, there is a dense set Σ ∈ Sn−1 such that the function t → A2

K(ξ, t) vanishes at the points 
h±
K(ξ) (when ξ ∈ ±Σ, respectively) to the order exactly 2n−1

2 = 2m − 1. Therefore, for any ξ ∈ Σ we have

P 2(ξ, t) = q(ξ, t)A2(ξ, t) = q(ξ, t)
(
h+
K(ξ) − t

)2m−1
P0(ξ, t),

where P0(ξ, t) is another polynomial with respect to t and P0
(
ξ, h+

K(ξ)
)
�= 0. Then P 2(ξ, t) has zero at 

t = h+
K(ξ), of even multiplicity. Comparing the multiplicities at both sides of the equality, we obtain 

q(ξ, h+
K(ξ)) = 0. Since Σ is a dense subset of Sn−1 and q(ξ, t), h+

K(ξ) are continuous with respect to ξ, this 
is true for all ξ ∈ Sn−1.

A similar argument using the expansion from Lemma 2.1 at the point h−
K(ξ) implies that q(ξ, h−

K(ξ)) =
0, ξ ∈ Sn−1. Since q(ξ, t) is a quadratic polynomial in t, the needed presentation for q(ξ, t) follows.

The case (i) easily reduces to (ii). Indeed, if AK(ξ, t) =
√

q(ξ, t)P (ξ, t) then 
√

q(ξ, t)AK(ξ, t) =
q(ξ, t)P (ξ, t) and this is the case (ii) because in the right hand side we have a polynomial in t. The lemma 
is proved. �
2.2. Functions with polynomial Hilbert transform on a finite interval

We will need some facts about the Hilbert transform (3). This transform is originally defined on continuous 
functions with sufficiently fast decay at infinity, but can be extended to less decaying functions and also to 
distributions. The Hilbert transform H is self-invertible; more precisely H(HF ) = −F . We have the following 
intertwining relation between the transform H and the operator of multiplication by the independent variable 
(see [5, Section 4.7]):

H(sϕ(s))(t) = tHϕ(t) − 1
π

∫
R

ϕ(s) ds. (9)

Let χ[a,b](s) be the characteristic function of the interval [a, b]. The Hilbert transform of the function 
χ[−1,1](s)

√
(1 − s)(1 + s) is well-known (see [5, formula 11.343]):

H
(
χ[−1,1](s)

√
(1 − s)(1 + s)

)
(t) = t, t ∈ [−1, 1].

By a linear change of variables one obtains the Hilbert transform of χ[a,b](s)
√

(b− s)(s− a):
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H
(
χ[a,b](s)

√
(b− s)(s− a)

)
(t) = t− b + a

2 , t ∈ [a, b]. (10)

We will also make use of the inversion formula for the Hilbert transform on a finite interval (finite Hilbert 
transform). Namely, if a continuous function F (t) is supported on an interval [a, b], then F can be recovered 
from the knowledge of the values of its Hilbert transform only on [a, b]. The corresponding inversion formula 
looks as follows (see, e.g., [9]):

√
(b− t)(t− a)F (t) = −H

(
χ[a,b](s)HF (s)

√
(b− s)(s− a)

)
(t) + 1

π

b∫
a

F (s) ds, t ∈ [a, b]. (11)

Lemma 2.3. Let [a, b] be a segment on the real line and let F be a continuous function on the real line, 
supported in the segment [a, b]. Then the following properties are equivalent:

(a) The function 
√

(b− t)(t− a)F (t) is a polynomial on the interval t ∈ (a, b).
(b) The function F (t)√

(b−t)(t−a) is a polynomial on the interval t ∈ (a, b).
(c) The Hilbert transform HF (t) is a polynomial on the interval t ∈ (a, b).

Proof. (a) ⇔ (b)
If (a) holds then 

√
(b− t)(t− a)F (t) = Q(t), t ∈ (a, b), where Q is a polynomial. Since F (t) is continuous 

at t = a and t = b we have Q(a) = Q(b) = 0, and by Bezout’s theorem Q(t) = (b − t)(t − a)Q1(t), 
where Q1 is another polynomial. Thus, 

√
(b− t)(t− a)F (t) = (b − t)(t − a)Q1(t), t ∈ (a, b) and hence 

F (t) =
√

(b− t)(t− a)Q1(t), t ∈ (a, b), which is exactly condition (b).
Conversely, if (b) holds then F (t) =

√
(b− t)(t− a)Q(t), t ∈ (a, b), Q is a polynomial. Multiplying both 

sides by 
√

(b− t)(t− a) leads to 
√

(b− t)(t− a)F (t) = (b − t)(a − t)Q(t), t ∈ (a, b), and therefore (a) holds.
(c) ⇒ (a)
Suppose that HF (t) = P (t), t ∈ (a, b), where P is a polynomial.
Then inversion formula (11) reads as

√
(b− t)(t− a)F (t) = −H

(
χ[a,b](s)P (s)

√
(b− s)(s− a)

)
(t) + 1

π

b∫
a

F (s) ds, t ∈ [a, b], (12)

and therefore, to prove (a), it suffices to prove that the right hand side is a polynomial on the interval (a, b). 
In turn, it suffices to check this only for monomials P (s) = sk.

Thus, we need to prove that the Hilbert transform of the function χ[a,b](s)sk
√

(b− s)(s− a) is a poly-
nomial.

It is true for k = 0 because identity (10) yields

H
(
χ[a,b](s)

√
(b− s)(s− a)

)
(t) = t + c0, t ∈ [a, b],

for a certain constant c0. For k > 0 formula (11) leads to

H
(
χ[a,b](s)sk

√
(b− s)(s− a)

)
(t) = t

[
H
(
χ[a,b](s)sk−1

√
(b− s)(s− a)

)
(t) + ck

]
,

where ck is a constant. Thus, by induction, the above two equalities imply that

H
(
χ[a,b](s)sk

√
(b− s)(s− a)

)
(t)
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is a polynomial of degree k + 1. Thus, the right hand side in (12) is a polynomial when P (s) is a monomial 
of an arbitrary degree and hence this is true for any polynomial P which proves (a).

(b) ⇒ (c)
If (b) is fulfilled then F (t) =

√
(b− t)(t− a)Q(t), t ∈ (a, b) for some polynomial Q(t). Then inversion 

formula (11) for the finite Hilbert transform on [a, b] can be written as

(b− t)(t− a)Q(t) = −H
(
χ[a,b](s)HF (s)

√
(b− s)(s− a)

)
(t) + c1, t ∈ [a, b],

where c1 is a constant.
Denote for convenience G(s) = χ[a,b](s)HF (s)

√
(b− s)(s− a). Then for t ∈ [a, b] we have

HG(t) = Q1(t),

where Q1(t) = −(b − t)(t − a)Q(t) + c1. Again, inversion formula (11) yields:

G(t)
√

(b− t)(t− a) = −H
(
χ[a,b](s)

√
(b− s)(s− a)Q1(s)

)
(t) + c2,

with some constant c2. We have just proven that the expression in the right hand side is a polynomial on 
t ∈ [a, b].

Substituting the expression for G we arrive at

(b− t)(t− a)HF (t) = P (t), t ∈ (a, b),

where P (t) is a polynomial. Since F (t) is bounded on the real line, |F (t)| ≤ C, and supported in [a, b], its 
Hilbert transform satisfies |HF (t)| ≤ C

π ln b−t
t−a , t ∈ (a, b). Hence the limits, as t → a, t → b, of the left hand 

side of the above equality are equal to zero. This implies P (a) = P (b) = 0 and hence P (t) = (b −t)(a −t)P1(t), 
where P1 is a polynomial. Then HF (t) = P1(t), t ∈ (a, b) and property (c) is proved. Thus, we have proven 
that the properties (a), (b), (c) are equivalent. The Lemma is proved. �
2.3. Equivalence of conditions (i), (ii), (iii)

The equivalence of conditions (i), (ii) and (iii) of Theorem 1.4 follows immediately from Lemma 2.2
and also from Lemma 2.3 applied to F (t) = AK(ξ, t), a = h−

K(ξ), b = h+
K(ξ). Indeed, Lemma 2.2 gives an 

explicit form of the quadratic polynomial q(ξ, t) in (i), (ii) and says that conditions (i), (ii), (iii) for AK(ξ, t)
read as conditions (a), (b), (c), respectively, for the function F (t) in Lemma 2.3. The latter lemma claims 
that conditions (a), (b), (c) are equivalent and therefore conditions (i), (ii), (iii) are equivalent, too.

3. Proof of Theorem 1.4. Equivalence of conditions (iii) and (iv)

Let us first show that (iv) implies (iii). Suppose that (iv) holds, i.e., K is an ellipsoid. Applying a 
translation, if needed, we may assume that the center of the ellipsoid is at the origin, and therefore its 
section function AK(ξ, t) is given by (4). Since n is even, AK(ξ, t) satisfies (ii) with q(ξ, t) = h2

K(ξ) − t2. It 
suffices to notice that, as we have proven in the previous section, conditions (ii) and (iii) are equivalent.

We will now prove that (iii) implies (iv). Before we start, let us outline the plan of the proof. Let K
be a convex body satisfying (iii). Without loss of generality we may assume that the origin is an interior 
point of K. Since HAK(ξ, t) is a polynomial in t of degree at most N , the derivatives of HAK(ξ, t) with 
respect to t of orders greater than N at t = 0 are equal to zero. In order to find derivatives of HAK(ξ, t) at 
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t = 0, we will compute its fractional derivatives. The reader is referred to [6, Section 2.6] for more details 
about such techniques. The next step is to express fractional derivatives of HAK(ξ, t) at zero in terms of 
the Fourier transform of expressions involving powers of the Minkowski functional of K. Recall that the 
latter is defined by

‖x‖K = min{a ≥ 0 : x ∈ aK}, x ∈ Rn.

Since ordinary derivatives are obtained by computing fractional derivatives at positive integers, we will get 
the condition that the Fourier transform of ‖ − x‖−n+1+m

K + (−1)m+1‖x‖−n+1+m
K must be concentrated at 

the origin for large enough integers m. This implies that ‖ − x‖−n+1+m
K + (−1)m+1‖x‖−n+1+m

K must be a 
homogeneous polynomial of x. An algebraic result from [7] then implies that K must be an ellipsoid in even 
dimensions.

Now we will provide details of the above plan. Let us write the Hilbert transform of AK(ξ, t) as follows

HAK(ξ, t) = 1
π

∞∫
0

AK(ξ, t− z) −AK(ξ, t + z)
z

dz.

Let q be a complex number such that −1 < 
q < 0. Consider the fractional derivative of order q at t = 0
of the function HAK(ξ, t).

(HAK)(q)(ξ, 0) = 1
Γ(−q)

∞∫
0

t−1−q HAK(ξ,−t) dt.

Let us briefly explain why the last integral converges. HAK(ξ, t) is a continuous function of t on R except 
possibly at the points t = h+

K(ξ) and t = h−
K(ξ), where in the worst case it behaves as ln |h+

K(ξ) − t| and 
ln |h−

K(ξ) − t| respectively. Additionally, as t → ±∞ it behaves as 1/t.
Writing HAK as follows:

HAK(ξ, t) = lim
ε→0+

1
π

∞∫
0

AK(ξ, t− z) −AK(ξ, t + z)
z1+ε

dz,

and using the dominated convergence theorem and Fubini’s theorem we get

(HAK)(q)(ξ, 0) = lim
ε→0+

1
πΓ(−q)

∞∫
0

t−1−q

∞∫
0

AK(ξ,−t− z) −AK(ξ,−t + z)
z1+ε

dz dt

= lim
ε→0+

1
πΓ(−q)

∞∫
0

1
z1+ε

∞∫
0

t−1−q (AK(ξ,−t− z) −AK(ξ,−t + z)) dt dz

= lim
ε→0+

1
πΓ(−q)

∞∫
0

1
z1+ε

∫
Rn

(
(−z − x · ξ)−1−q

+ − (z − x · ξ)−1−q
+

)
χ(‖x‖K) dx dz.

Here and below we use the following notation. If 
λ > −1, then

tλ+ =
{

0, t ≤ 0,
tλ, t > 0,

and tλ− =
{
|t|λ, t < 0,
0, t ≥ 0.
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Observe that (HAK)(q)(ξ, 0) naturally extends to a homogeneous function of ξ ∈ Rn of degree −1 − q, 
and we will consider its distributional Fourier transform with respect to ξ. Let φ be a Schwarz function. 
Then

〈
(
(HAK)(q)(·, 0)

)∧
, φ〉 = 〈(HAK)(q)(ξ, 0), φ̂(ξ)〉

= lim
ε→0+

1
πΓ(−q)

∞∫
0

1
z1+ε

∫
Rn

χ(‖x‖K)
∫
Rn

(
(−z − x · ξ)−1−q

+ − (z − x · ξ)−1−q
+

)
φ̂(ξ) dξ dxdz

= lim
ε→0+

1
πΓ(−q)

∞∫
0

1
z1+ε

∫
Rn

χ(‖x‖K)
∫
R

(
(u− z)−1−q

+ − (u + z)−1−q
+

) ∫
x·ξ=−u

φ̂(ξ) dξ du dxdz.

The Fourier transform of (u− z)−1−q
+ − (u + z)−1−q

+ with respect to u equals

iΓ(−q)
(
ei(−1−q)π/2sq+e

−izs − ei(1+q)π/2sq−e
−izs − ei(−1−q)π/2sq+e

izs + ei(1+q)π/2sq−e
izs

)
= 2 sin(zs)Γ(−q)

(
ei(−1−q)π/2sq+ − ei(1+q)π/2sq−

)
;

see [4, Ch. II, Sec. 2.3].
Using the connection between the Radon transform and the Fourier transform, we get

(2π)−n+1〈
(
(HAK)(q)(ξ, 0)

)∧
, φ〉

= lim
ε→0+

2
π

∞∫
0

1
z1+ε

∫
Rn

χ(‖x‖K)
∫
R

sin(zs)
(
ei(−1−q)π/2sq+ − ei(1+q)π/2sq−

)
φ(−sx) ds dx dz

= lim
ε→0+

2
π

∫
Rn

χ(‖x‖K)
∫
R

∞∫
0

sin(zs)
z1+ε

dz
(
ei(−1−q)π/2sq+ − ei(1+q)π/2sq−

)
φ(−sx) ds dx.

The latter use of the Fubini theorem explains why we passed from 1/z to 1/z1+ε earlier: the integral of 
sin(zs)
z1+ε is absolutely convergent, while the integral of sin(zs)

z is not. To compute 
∫∞
0

sin(zs)
z1+ε dz we can write it 

as 1
2i
∫∞
0

eizs−e−izs

z1+ε dz and then repeat the calculations from [4, Ch. II, Sec. 2.3] for the Fourier transform 
of z−1−ε

+ . As a result we get

∞∫
0

sin(zs)
z1+ε

dz = 1
2i

(
ie−i(1+ε)π/2Γ(−ε)

(
sε+ + eiεπsε− − sε− − eiεπsε+

))
= 1

2e
−i(1+ε)π/2Γ(−ε)

(
sε+ − sε−

) (
1 − eiεπ

)
= − sin(επ/2)Γ(−ε)|s|εsgn(s).

Therefore,

lim
ε→0+

∞∫
0

sin(zs)
z1+ε

dz = π

2 sgn(s),

and hence
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(2π)−n+1〈
(
(HAK)(q)(ξ, 0)

)∧
, φ〉

=
∫
Rn

χ(‖x‖K)
∫
R

sgn(s)
(
ei(−1−q)π/2sq+ − ei(1+q)π/2sq−

)
φ(−sx) ds dx

=
∫
Rn

χ(‖x‖K)
∞∫
0

sgn(s)ei(−1−q)π/2sq ds φ(−sx) dx

−
∫
Rn

χ(‖x‖K)
0∫

−∞

sgn(s)ei(1+q)π/2|s|q ds φ(−sx) dx

=
∫
Rn

χ(‖ − x‖K)
∞∫
0

ei(−1−q)π/2sq ds φ(sx) dx

+
∫
Rn

χ(‖x‖K)
∞∫
0

ei(1+q)π/2sq ds φ(sx) dx

= e−i(1+q)π/2
∫

Sn−1

‖−θ‖K∫
0

rn−1
∞∫
0

sqφ(srθ) ds dr dθ

+ ei(1+q)π/2
∫

Sn−1

‖θ‖K∫
0

rn−1
∞∫
0

sqφ(srθ) ds dr dθ

= e−i(1+q)π/2
∫

Sn−1

‖−θ‖K∫
0

rn−2−q

∞∫
0

sqφ(sθ) ds dr dθ

+ ei(1+q)π/2
∫

Sn−1

‖θ‖K∫
0

rn−2−q

∞∫
0

sqφ(sθ) ds dr dθ

= 1
n− 1 − q

∫
Sn−1

(
e−i(1+q)π/2‖ − θ‖−n+1+q

K + ei(1+q)π/2‖θ‖−n+1+q
K

) ∞∫
0

sqφ(sθ) ds dθ

= 1
n− 1 − q

∫
Rn

(
e−i(1+q)π/2‖ − x‖−n+1+q

K + ei(1+q)π/2‖x‖−n+1+q
K

)
φ(x) dx.

Thus, we have shown that

(2π)−n+1
(
(HAK)(q)(ξ, 0)

)∧
(x) = 1

n− 1 − q

(
e−i(1+q)π/2‖ − x‖−n+1+q

K + ei(1+q)π/2‖x‖−n+1+q
K

)
,

that is

(HAK)(q)(ξ, 0) = 1
2π(n− 1 − q)

(
e−i(1+q)π/2‖ − x‖−n+1+q

K + ei(1+q)π/2‖x‖−n+1+q
K

)∧
(ξ),

for all complex q such that −1 < 
q < 0. Using analytic continuation, we see that the formula is still valid 
for all q ∈ C \ {n − 1}.
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Since HAK(ξ, t) is a polynomial of t of degree at most N , we have (HAK)(m)(ξ, 0) = 0 for all ξ ∈ Rn\{0}
and all natural m > max{N, n − 1}. This means that(

e−i(1+m)π/2‖ − x‖−n+1+m
K + ei(1+m)π/2‖x‖−n+1+m

K

)∧
(ξ)

is a linear combination of derivatives of the delta function supported at the origin. Thus,

e−i(1+m)π/2‖ − x‖−n+1+m
K + ei(1+m)π/2‖x‖−n+1+m

K

is a polynomial of x.
When m is odd, we get

e−i(1+m)π/2 = ei(1+m)π/2,

and hence

‖ − x‖−n+1+m
K + ‖x‖−n+1+m

K

is a polynomial when m is odd.
Similarly, when m is even, we get

e−i(1+m)π/2 = −ei(1+m)π/2,

and thus

‖ − x‖−n+1+m
K − ‖x‖−n+1+m

K

is a polynomial when m is even.
Thus for every positive integer � > (N − n)/2 we have

‖ − x‖2
+1
K − ‖x‖2
+1

K = P
(x)

and

‖ − x‖4
+2
K + ‖x‖4
+2

K = Q
(x),

for some homogeneous polynomials P
 and Q
 of degrees 2� + 1 and 4� + 2 respectively. Solving the latter 
system of equations we obtain

‖x‖2
+1
K = P̃
(x) +

√
Q̃
(x), (13)

where P̃
(x) = −1
2P
(x) and Q̃
(x) = 1

4
(
2Q
(x) − P 2


 (x)
)
.

As was shown in [7, Theorem 3.6], condition (13) for all large � implies that

‖x‖K = P (x) +
√

Q(x), (14)

for a linear polynomial P and a positive quadratic polynomial Q. From here it is not difficult to see that K
must be an ellipsoid. Indeed, let x ∈ ∂K, then ‖x‖K = 1 and therefore (14) yields

(1 − P (x))2 = Q(x).
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This means that ∂K is a quadric hypersurface. Since K is compact, it must be an ellipsoid.
Finally, let us remark that bodies with polynomial HAK(ξ, t) do not exist in odd dimensions. This follows 

from the fact that the function

‖ − x‖−n+1+m
K + ‖x‖−n+1+m

K

is an even function, but at the same time, it has to be a polynomial of an odd degree −n +m + 1, if n and 
m are both odd. The only polynomial that is both odd and even is the zero polynomial.
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