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1. Introduction

In [3] Busemann and Petty posed 10 problems concerning the plane sections through
the center of a symmetric convex body in R™, which arose in their study of Minkowski
spaces. They expressed the belief that “contributions to these problems would not only
advance the theory of Minkowski spaces,’ but lead the way to a new direction of research
on convex bodies”. The first problem had attracted a lot of attention before its final
solution appeared at the end of 1990’s in a series of papers by many mathematicians
(see [7]). The solution brought to existence several new methods that are widely used
now, including Lutwak’s dual Brunn-Minkowski theory and the Fourier analytic approach
to convex geometry. We are, however, not aware of any significant work on any of the
other nine problems since the time of their formulation by Busemann and Petty.

The current paper offers a modest progress in the fifth and the eighth problems.
Namely, we show that the corresponding conjectures hold in a sufficiently small neigh-
borhood of the Euclidean ball in the Banach-Mazur distance. Our approach continues
the tradition of using harmonic analysis methods in convex geometry but, unfortunately,
as of now, our tools work only at the level of perturbation theory. It would be extremely
interesting to extend them to the general setting or to find an alternative approach.

The fifth and the eighth problems can be equivalently restated in the convex geometry
language as follows.

Problem 5. If for an origin-symmetric convex body K C R™, n > 3, we have
hg(@)vol, (KN =C  Voe S, (1)
where the constant C' is independent of 6, must K be an ellipsoid?
Here S™~1 is the unit sphere in R", 8+ = {z € R™ : (z,6) = 0} is the hyperplane

orthogonal to the direction § € S™ 1 and passing through the origin, and hg(6) =
ma&:(x, 6) is the support function of the convex body K C R™.
ze

Problem 8. If for an origin-symmetric convex body K C R™, n > 3, we have
fx(0) = C(vol,_1 (K net)"tt  vge st (2)
where the constant C' is independent of 6, must K be an ellipsoid?

Here fx is the curvature function of K. In the C2-smooth non-degenerate case it is
just the reciprocal of the Gaussian curvature viewed as a function of the unit normal
vector.

1 We refer the reader interested in the Minkowski geometry meaning of the Busemann-Petty problems to
[2,3,11] and the survey [9].
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The general definition is as follows. For a convex body K, let @ C 0K be the set
of points z on the boundary 0K of K where the supporting hyperplane of K and,
thereby, the outer unit normal vector 6, is unique. By Theorem 2.2.5 (see [12, pg. 84]),
H" 10K \ Q) = 0. The mapping G(z) = 6, is a well-defined Borel measurable mapping
from Q to S™ 1. Let 0= g*%"*1|g be the push-forward of the surface area on 0K to
the unit sphere. When p is absolutely continuous with respect to the surface measure
on the sphere, we call its Radon-Nikodym density the curvature function and denote it
by fk. It is not hard to see that this definition coincides with the previous one in the
smooth case (see [12, pg. 545]).

It is unclear to us what degree of smoothness Busemann and Petty assumed when
posing Problem 8, so we will handle the general case. The reader will lose almost nothing,
however, by assuming that 0K is smooth and non-degenerate, but K is close to the unit
ball only in the Banach-Mazur distance and not in C2.

The Euclidean ball clearly satisfies (1) and (2). On the other hand, if a symmetric
convex body K satisfies (1) or (2), then so does T K where T is an invertible linear map
from R™ to itself. Hence, (1) and (2) are satisfied by ellipsoids.

Note that this linear invariance motivated the very formulations of the Busemann-
Petty problems so that their statements reflect the intrinsic properties of the correspond-
ing Minkowski spaces rather than just those of the particular embeddings of these spaces
into R™. In particular, the power n + 1 on the right-hand side in (2) is the only power
that makes the statement of Problem 8 affine invariant.

In this paper we prove the following result.

Theorem. Let n > 3. If an origin-symmetric conver body K C R™ satisfies (1) or (2)
and is sufficiently close to the Euclidean ball in the Banach-Mazur metric, then K must
be an ellipsoid.

In dimension 2, there are convex bodies satisfying (1) that are not ellipses but, nev-
ertheless, can be arbitrarily close to the unit disc. The curve bounding such a body is
a so-called Radon curve, see [10], in particular, Section 6. On the other hand, the only
convex bodies satisfying (2) in dimension 2 are the ellipses [11, Theorem 5.6].

2. Outline of the proof

The arguments presented in this paper are mainly inspired by and closely follow
the ones in [4], where the limiting behavior of the iterations of the intersection body
operator was studied in a small neighborhood of the unit ball. For the purposes of this
exposition, the main result of [4] can be considered as the statement that a convex body
K sufficiently close to an ellipsoid in the Banach-Mazur metric whose second intersection
body is homothetic to K must be an ellipsoid.

Our first (well-known) remark is that both the fifth and the eighth Busemann-Petty
problems are invariant under linear transformations (see Section 3). This allows us to



4 M.A. Alfonseca et al. / Advances in Mathematics 390 (2021) 107920

consider convex bodies close to the unit ball in the Hausdorff distance rather than just in
the Banach-Mazur one (see Section 4). Similarly to [4], we employ the spherical harmonic
decomposition of the radial function pg of the body K and choose the affine image of K
for which the contribution of the second order harmonics is negligible. It turns out that
the standard isotropic position (see Section 5) is already good enough from this point of
view.

However in [4] these preliminary steps immediately resulted in the equation px =
I[I[pk]] with I[p] =R [p"_l} , where R is the usual Radon transform on the unit sphere

S"~1. Then the linearization
'R[p"_l] =1+ (n—1)R(p — 1) + higher order terms

of the right-hand side for p ~ 1 and good contracting properties of the operator w
(n — 1)Rw on the space of even functions on the sphere orthogonal to constants and
quadratic polynomials essentially finished the story.

-1

Our main difficulty now is that a similar analytic reformulation hx = (R [p’}(_l

(see Section 6) of the fifth Busemann-Petty problem, which is the simpler of the two,
involves both the radial function px and the support function hg of the convex body K.
They uniquely determine each other, of course, but the relation between them is non-
linear, non-smooth, and quite complicated in general, so the straight-forward elementary
smooth calculus techniques seem no longer directly applicable.

What saves the day, however, is that when K is close to the unit ball, hx can essentially
differ from py only if both experience noticeable (compared to the full L2-norm of their
respective deviations from constants) high frequency oscillations. The above equation
does not prohibit it for px but, since it gives an expression for hg involving the Radon
transform and the latter suppresses high frequencies, it makes it impossible for Ay . The
formal expressions of these two steps are given by Lemmas 3 and 4 (see Sections 7 and
8). Their formulations are a bit too long and technical to include into this brief outline,
so we refer the interested reader directly to the main text here.

Problem 8 presents an extra complication that even the left-hand side in the corre-
sponding analytic reformulation is given by a nonlinear second order differential operator
of hk, so, in addition to the linearization techniques and the above observations, we need
to use some elementary theory of the Monge-Ampére equation (see Appendix II) there.

While we treat Problems 5 and 8 in parallel whenever possible, the reader who wants
to get the gist of our present work without going into the nitty-gritty of it may choose
to ignore everything related to Problem 8 entirely and to concentrate exclusively on
Problem 5 postponing the rest for later readings.

3. Invariance of Busemann-Petty problems under linear transformations

Both Busemann-Petty problems are invariant under linear transformations. More pre-
cisely, we have the following
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Lemma 1. If a body K satisfies (1), then so does TK for any linear transformation
T € GL(n) with constant C - |detT|. Similarly, if a body K satisfies (2), then so does
TK for any linear transformation T € GL(n) with constant C -|det T|1~™.

Proof. This statement is almost obvious for Problem 5. Indeed, let H be any hyperplane
in R™ passing through the origin and let Hg be a support hyperplane of K parallel to
H. Consider any point p € K N Hg and the cone Ck,pg with the base K N H and the
vertex p. Note that due to the symmetry of K and the fact that Hy is parallel to H,
the volume vol,,(Ck, ) of this cone is independent of the particular choice of Hy and p.
Moreover, we clearly have Crx rg = T(Ck, i), so vol,(Crk,ru) = |det T'|vol, (Ck, i)
Since for H = 6~ this volume can be expressed as vol, (Ck i) = 1vol,_1 (KN )hk(0),
we see that property (1) is merely the statement that vol,, (Ck ) is independent of the
choice of the hyperplane H (this was exactly how the fifth Busemann-Petty problem was
originally formulated in [3]).

The invariance of (2) under linear transformations is somewhat less transparent. When
K has smooth non-degenerate C2-boundary with strictly positive Gaussian curvature at
each point, we can restate it as follows.

Let, as before, H be an arbitrary hyperplane passing through the origin, let Hg be
one of the two supporting hyperplanes of K parallel to H, and let p € K N H,. For

€ (0,1), let H* be the hyperplane between H and H, parallel to H such that the
distance between Hg and H? is ¢ times the distance d between Hg and H. Then, for
small t, the1 (n — 1)-dimensional volume vol,_1(K N H*) is approximately proportional

n—1 n—
to % where G(p) is the Gaussian curvature of 0K at p.
vol,,_1(KNH?)

Note now that ol (RAH) is invariant under linear transformations and d vol,—1 (KN
H) = nvol,(Ck g) is multiplied by |detT| when we replace K by TK and H by TH.
Thus, G(p)vol,_1(KNH)"*! equals (up to a constant factor depending on the dimension
n only)

: n—1 n—1
}E’)I(l)t vol, (Cx.m) [

volp,—1(K N H) ]2
vol, 1 (K NHt)l "’

and thus is multiplied by |det T|*~! when we replace K by TK and H by TH.
The formal proof of the invariance of (2) under linear transformations in the general
case can be found in [8], see Proposition 2.9 on page 52. O

4. From the Banach-Mazur distance to the Hausdorff one

Applying an appropriate linear transformation, we can assume that the constants in
(1) and (2) are equal to those for the unit ball Bf and that (1—&)rBy C K C (1+¢)rBg
for some r > 0 with some small £ > 0.

Our task here will be to show that r» must be close to 1, i.e., K must be close to the
unit Euclidean ball BY in the Hausdorff metric. We have
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(1 — E)T‘th < hg< (1 + 8)7’th
and

(1 —¢e)"1r"1vol,,_1(BY N6*+) < vol, 1(KNo+) <

(1+¢e)"1r"~1yol,_;(By N61).
In the case of (1), combining (3) and (4) with the equation
hK(O)Voln_l(K N OL) = hBQ" (G)Voln_l(Bg N Ol),

we obtain (1 —&)"r™ <1< (1+¢&)™r™, ie,

1 1
<1< € T STS 7

(4)

In the case of (2), we can integrate both sides with respect to the (n — 1)-dimensional

Lebesgue measure on S™~! to conclude (see [12], Section 5.3.1) that
Y(K) = / fr(0)dm,_1(6) =
Sn—1

Cn / (voln_1 (K N 64)" " dm,_1(6),

Ssn—1

where 3(K) is the surface area of K and ¢, is defined by

n+1

S(BY) = e / (volo_1(By N 61)™ " dmo_1(6).

Sn—1
From our assumption (1 —e)rBy C K C (1 +¢)rBg, it follows that
(1 —e)" " IS(BY) < B(K) < (1+€)" 1" IN(BY),

which, together with (4) and (5), gives

(1 _ E)n—lrn—l < (1 +€)(n—l)(n+1)r(n—l)(n+l)
and

(1 _I_g)n—l,rn—l > (1 _ E)(n—l)(n—i—l),r(n—l)(n—f—l)’
i.e.

1—c¢ < < 1+e¢
— <7 —
(1 + €)n+l — — (1 _ E)n+1

(5)
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5. The isotropic position

We have seen in the previous section that, without loss of generality, we may assume
that (1 —e)Bg € K C (1 + ¢)B%. However, this requirement still leaves some freedom
as to what affine image of K to choose. In this section we will reduce this freedom even
further by putting K into the so-called isotropic position, i.e., the position where

/(z,y)2dy =c|z|? Vo € R™.
K

The existence of such a position is well known and easy to derive (see [1], Section
2.3.2). Indeed, for an arbitrary symmetric convex body K, the mapping

R">z — /(x,y)Qdy = Z (/yiyjdy)xixj
K

i K
is a positive-definite quadratic form. Thus, it can be written as (Sz,z), where S is a

self-adjoint positive definite operator on R™.
Moreover, if K = BY, then S = ¢, I for some ¢, > 0. If (1 —¢)BY C K, then

(Sz,z) = / (z,y)2dy > / (2, 5)2dy = (1 — &)™+ 2c, |z
(1—€)Bg

and, similarly, if K C (1 +¢)B%, then
(Sz,x) < (1+¢)" e, |z
Thus, setting S = ¢;;15, we have
(1 = &)™ 2af? < (8,2 < (14 )™ 2|ol?,
It follows that
(1 — &)™) < det(S) < (1 + &)™+
and

IS < (1+2)™2, (|51 < (1—e)~(+2),

whence the operator T' = y/det(S)~= S satisfies
1+ z—:) =42

det T =1, Il 17 < (7

?
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and T~1ST~1! is a multiple of the identity.
The body K = T—'K satisfies

/(m,y)Qdy = /(m,T‘ly)Qdy = /(T_lm,y>2dy =

K
(ST o, T~ ) = (T718T a,z) = c|z|?

for some ¢ > 0, while we also have

e\
rve)

(1- e)( By cT'(1-e)B} c T'K

n
2 .

1 nt2
CT (1 +e)B} C (1—|—e)(1+€) :

6. The analytic reformulation

Let px, hx : S* 1 — R be the radial and the support functions of the convex body
K respectively, i.e.,

pr(0) =max{t >0: th e K}
and
hik(0) = max{(z,0) : z € K}.
The (n — 1)-dimensional volume of the section K N #+ is given by

vol,_1(K Nét) = cnR[p?{‘] ;

where ¢, is a positive constant depending on the dimension n only and R is the Radon
transform on ™71 i.e.,

RF() = / F()do(e)

Sn—1ngL

with o being the (n — 2)-dimensional Lebesgue measure on S"~! N @+ normalized by
the condition ¢(S"~1 N #+) = 1, i.e., R1 = 1. Thus, condition (1) can be rewritten as
hxR p;‘(_l = C, where, due to the normalization made at the beginning of Section 4,
the constant C should be the same as for the unit ball By, i.e., C = 1. So, we arrive at
the equation

-1

hic = (R [pf;;lb . (6)
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Rewriting (2) in terms of hx and pg is trickier. The right-hand side presents no

n+1
problem: it is just proportional to (R[p?(_l]) . So, the equation becomes fx =

C (R pT}(_Cl] n+1. Due to the normalization made at the beginning of Section 4, the
constant C' should be the same as for the unit ball Bf, i.e., C' = 1. However, fx can be
readily expressed in terms of hg only if hg is C? and we have made no such assumption.
The expression for fx in the C?-case can be written as fx = Ahx where the operator
A is defined as follows. For a function h € C?(S"1) denote by H(z) its degree 1
homogeneous extension to the entire space (i.e., H(x) = |ac|h(]%) for z # 0). Let H=
(Hz,z,)7 =1 be the Hessian of H and let H ; be the matrix obtained from H by removing
the j-th row and the j-th column. Let Ah be the restriction of Zn: det I/-\Ij to the unit
=1
sphere S"~1 (see [12], Corollary 2.5.3). ’
In the general case we shall first show that when pg is close to 1, we can solve the
equation

= (=)

with h close to 1 in C2. This h will determine a convex body L that satisfies f1, = fx.
By the uniqueness theorem (see [12], Theorem 8.1.1) we will then conclude that K = L,
so hg = h, i.e., the smoothness of hx will automatically follow from equation (2), at
least when pg ~ 1. Thus, it will be possible to rewrite (2) as

Ahg = (R [p;*])"ﬁ. (7)
7. Maximal function

For e € S"71, 9 € (0,7, let Sy(e) = {e/ € S"1, (e,e’) > cos¥} denote the spherical
cap centered at e with spherical radius . The spherical Hardy-Littlewood maximal
function is defined by

Mf(e) = sup L

(S (o)) x)lao(x 1/on—1
se(0,x] 7(So(e)) / \f(z)ldo(x),  feL'(s"),

Sy (e)

where o is the surface measure on S"~! normalized by the condition o(S"~1) = 1. It is
well known that M is bounded as an operator from L?(S"~1) to itself (see [6]).

Lemma 2. Let K be a 2-dimensional origin-symmetric convez body and let R be a positive
real number. Let hx = R+w be the support function of K and let e € St be a unit vector.
Assume that hi(e) < Rcos? for somed) € (0, ). Denote by €'(t) the unit vector situated
clockwise from e and making an angle t with e. Then
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(R —+ M) e(to)

Fig. 1. The body K, the lines (z,e) = R+ w(e), (z,€e’(tg)) = R+ %|w(e)|, and the point p.

|<—/|w ())]dt.

Proof. Note that the hypothesis hx(e) < Rcos? implies that w(e) < 0. If w(€'(t)) >
Hw(e)| for all t € [419 9], the inequality clearly holds. Assume now that w(e’(tp)) <
Llw(e)| for some to € [42,99]. Let p be the intersection point of the lines (z,e) = R+w(e)
and (z,€'(tg)) = R+ 1|w(e)|. Then p lies clockwise from e and, since [p| > R and
(p,e) = hi(e) < Rcosd, the angle a between p and e is at least ¥ (see Fig. 1). Also,
since (p, e) = hx(e) >0, we have a < §

Since K is contained entirely in the angle (z,e) < R+wl(e), (z,€(tg)) < R+ Llw(e)]
with vertex p, we have hi (€'(t)) < (p,€e'(t)) = |p| cos(a — t) for all ¢ € [0, to].

We shall now use the followmg elementary property of the cosine function: if v, § > 0
and [y — d,7 + 4] C [0, 5], then cos B < 3°°S('Y_5)4"'°°S('7+5) for all B € [y, + d]. Indeed,
since cos 8 < cos 7, it suffices to show that

3cos(y — 0) + cos(y + 9)

1. .
cosy < 7] :cos'yc055+551n'ysm6.
Rewri;ing this as cosy(1 —cosd) < sm vsin § and using the 1dent1ty 1—cosd = llf'_cc"(fj 5‘5
= ls_;'clofé, we see that we need to prove that ﬂ‘r_é sin2§ < 1 5 sinysin 4. However, since
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0<d<v< 3, we have cosy < cosd < 1 and sin-y > sind, so the left hand side is at
most % sin? § and the right hand side is at least that.

Applying this property to the interval [o — to, ], i.e., with v = a — %0, 0= %’, we
conclude that

) 3 1 1 1
<2 - = —R_-
hic(€'(®) < 7 (R+lw(e)]) + 7(R+w(e)) = R— = w(e)
for every t € [0,%] > [2,22] and the conclusion of the lemma follows again. O

Corollary 1. Let K be a convex body in R™ and let R > 0. Let hg = R+w be the support
function of K and let e € S"~! be a unit vector. Assume that hx(e) < Rcos? for some
Y€ (0,5). Then

1 ! !
[o(6)| < € sz / lw(e)ldo(e)).

Sﬁ (e)

Proof. We will use the parametrization e’ = €'(t,v) € S"~! where ¢ is the angle between
eand €', and v € S" ! Nel is such that e’ = ecost + vsint.

Note that do,—1(€’) = ¢, (sint)"~2dtdoy,—o(v). It follows from the lemma applied to
the projection of K to the plane spanned by e and v that

9

3 n72/|w(e'(t,v))|(sint)"‘2dt,

9
35
lw(e)] < == [ |w(e'(t,v))|dt <
v Z/ 9 (sin(g)) J

Integrating this inequality with respect to v and observing that o(Sy(e)) =< 9"~ 1 =

19(Sin(g))"*2, we get the statement of the corollary. 0O

Lemma 3. Assume that a symmetric conver body K is very close to the unit ball and
leN. Let h = hk and p = px be the support and the radial functions of K respectively.
oo}

Trivially, p < h. Let h = Y h,, be the decomposition of h into spherical harmon-
m=0
l
ics (since h is even, only hym with even m are not identically 0). Put n = > hm,
m=1

o0
v= 3 hmy. Then for every e,l > 0, there exists o = do(e,l) such that whenever
m=Il+1
[Ih — 1|loo < b0, the inequality

h—p<elnlz+CMv

holds, where C' is an absolute constant and M is the spherical Hardy-Littlewood maximal
function.
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Proof. We have

: h(e’)
ple) = {e'eS"—lll}{e,e'bO} (e e’)’

Note that the admissible range of €’ can be further restricted to |e—e’| < § with arbitrarily

small § > 0, provided that d¢ is chosen small enough. Indeed, since h(e’) > i;gg h(e), e

can compete with e only if (e, e’) > %g, SO

460
—_ ,2: —_— / < 2
le—e€'|* =2(1 <e,e))_1+60<5

if o > 0 is chosen appropriately. Now observe also that all norms on the finite-
dimensional space of polynomials of degree not exceeding ! on the unit sphere are
equivalent, and that any semi-norm is dominated by any norm, whence

[nllcesn-1) < COnlleesn-1y  and  [[Villoesn-1y < COlnllL2(sn-1).-
In particular, if |e — e”| < 26, we get
In(e) —n(e”)| < 4[Vnllc(sn-1)6 < 4C1)d]In]|L2(sn-1)-
Let us now assume that e/ € S"~1, with |e —¢’| < d, is a competitor, so {%)7 < h(e).

Then, if ¥ is the angle between e and e’, we have h(e’) < h(e)cos?, so we can apply
Corollary 1 to the vector ¢’ with R = h(e) and conclude that

e) — h(e,) e) — e/ L e) — el/ o el/
h(e) = 7o gy < h(©) —h( )sa(sﬂ(e,))s(/y) [A(e) — h(e")|do (")
C, " 1
<oy [ e = b,
Says(e)
However,
[h(e) — h(e")] < [n(e) —n(e")| + [v(e)] + [v(e")],
and
[n(e) —n(e")| < 4CDIInllL2(sm-1),
while
1 " "
|v(e)| < Mv(e)  and 7 520(@) / |v(e”)|do(e") < Mu(e),

Sgg (e)

so the desired statement follows if we choose § > 0 so that 4C'C(l)d <e. O
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8. Contraction

Let 9 be a bounded linear operator on L? = L?(S"~1) such that 9 is proportional
to the identity on every space H,, of spherical harmonics of degree m, i.e., for some
,u‘m € RJ

Mf = Z L fm where f= Z fm and fm € Hm

m>0 m2>0

is the spherical harmonic decomposition of f € L2(S"~1). We say that O is a strong
contraction if

ITInlg%{ |pm| <1, and ngnooum =0.

Lemma 4. Assume that 9 as above is a strong contraction. Then, there exists 6 € (0,1)
such that for any symmetric convex body K and any c € (1 — 6,1+ 9), the conditions

1-6<pk <1+, [[(hx — ho) — cM(pr —10)|[L2 < dlpr — 7ol| L2,

imply hx = pg = const. Here, hy and r, are the constant terms of the spherical harmonic
decomposition of hx and pg, respectively.

Proof. Fix a large [ and consider the decompositions
hg =ho+n+v and PK =To + @+,

where h,, r, are the constant terms, n and ¢ are the parts corresponding to the harmonics
of degrees 1 to [ and v and v are the parts corresponding to the harmonics of degrees
greater than [.

Fix € > 0. Since the projection to any sum of spaces of spherical harmonics in L? has
norm 1, we have

In— emMells < i — ho — eM(px = ro)l22 < (8)
ollox —rollz < 3(llllee + 22)-

Similarly,
[V —eMpl| 2 < 5(llelle> + 1912)- 9)
From (9) we obtain that

Wllz> < ellMplle + 6(llellee + [[$]e2) <
(1 + &) (masx | ) [Yllz2 + 8(llllz2 + [0]22) < elllellze + [[#]2) (10)
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if [ is large enough (recall that lim p,, = 0) and ¢ is small enough. The same compu-
m—0o0

tation for 7, using in this case that max |pem| < 1, yields
m=z

Imllze < (T+28)(llellL> + [19llz2)- (11)

On the other hand, by Lemma 3 and the boundedness of the maximal function in L2,
we have

lhx = prllee <ellnllze + Clivlice,
which implies
In—ellez <ellnllee + Clvle and  |lv =9l <elnlle> + Cllvlle.  (12)
Combining (8), (9), (10), (11), and (12), we obtain

lp — cMpll 2 + [ — M| 2
<o —nlle> +lln — eMplL2 + [l = vlL2 + [lv — e M| 2
<CE+e)llelle> + llllze)-

On the other hand, for any function x € L?(S"~ 1), we have
I = eMxlze = (1 = (1 +6) max )| x|,
so we can conclude that ¢ =0, ¢ =01if C(d+¢) <1—(1+49) max lpm|. O

Remark 1. Note that (hx —ho) —eIM(px — o) is orthogonal to constants and, therefore,
its L2-norm does not exceed ||(hg —A) —c9M(pr —7,)|| 2 for any A € R. Thus, to verify
the conditions of the lemma it suffices to check that

[[(he = A) —cM(pr —7o)|lL> < d|lpx — 7o 22

with any A € R of our choice.
9. Properties of the function (R[p$])? when px is close to 1

Let K be a symmetric convex body in the isotropic position such that 1 —§ < pg <
1+ 6 for some small § > 0. Let a, 8 € R. We want to derive several useful properties of
the function (R[p%])”.

The first observation is that pg is Lipschitz with Lipschitz constant 5v/8. Indeed, let
r,ye SPLIf |z —y| > @, then we have
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ok () — pic(y)] < 20 < 4V5|z — |,

so we may assume that 0 < |z — y| < @. Without loss of generality, px(z) > px(y).
Let us denote X = pg(z)z, Y = px(y)y, where X,Y € 0K. By the convexity of K,
every point on the line Y — ¢(X —Y') with ¢ > 0 lies outside K and, therefore, outside
(1 —0)B% as well. Hence,

(1-0)2<|y —t(X-Y)?=|YP-2(X -Y,Y)+ 2| X - Y|~

Since |Y]? < (1 + 6)2, we conclude that, for all ¢ > 0,

(X —-Y,Y)— 2| X —Y|* < 4. (13)
From (13) it follows that
(X -Y,Y) <2V5|X - Y. (14)
Indeed, if (X —Y,Y) <0, the inequality is obvious. Otherwise, we can plug t = %%}Q
(X-Y,Y)?

into (13), obtaining ¢ “x—ype < 46, which is equivalent to (14). Now, equation (14) can
be rewritten as

XY [, y) — [Y* < 2V6|X — Y],
or, equivalently,
YT(X] = [Y]) < 2V6|X = Y[+ |X[|Y|(L — (z,9))
Observe that 1 — (z,y) = 3|z —y[? < %kc —y|, while | X = Y| < |X| = Y|+ |Y||lz —y|

Hence,

2v/6 | X|
x1- vl < 2 0x1 = 1vD + (24 1) Vol -l

Now, if § € (0,1/25),

26 _ 2V5 2/5 1

< <
V[ S1-6"1-1/25 =2’

and we conclude that
X 149
x1- 11 <2 (24 B1) Ve -t < (44 252 Valo ol < 5vBlo -l

as required.
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Since the mapping ¢ — P is Lipschitz on any compact subset of (0,+00) and the
Radon transform does not increase the Lipschitz constant of the function, we immediately
conclude that (R[p%])? has Lipschitz constant at most Cy gV/3.

Let nowro = [ pkdo be the mean value of px on the unit sphere. Clearly, |r,—1] <
Ssn—1
J, so |pr — 10| < 26 and, thereby, R|px — 10| < 26 as well. Now, using the fact that

t + t? is C? on any compact subset of (0,4o0) and linearizing, we successively derive
that

|p% — (r§' + arg ™ (pr —10))| < Cadlpr — 1ol
IR[p%] — (rg + arg ™" R(px — 10))| < Ca 6R|px — 70,
(R[p5%])P — (& + ard '"R(pk — 10))°| < Cap 0R|px — o,
|(Rlp%))? — (r&? + aBrePR(pk — 10))| < Cayp 6R|pK — 7ol.

Thus, (R[p%])? = 8 + v, where
[y = i Rpx — 10)| < Cap 9Rlpx — ro|-

In particular, we conclude that |y| < C, g, which, together with the above observation
about the Lipschitz constant, implies that

x J—
Il g =maxhyl+  sp 2O
ST et sy Ja—yl?

Now let px — 70 = Yo+ Y4+ ... be the spherical harmonic decomposition of px — 7.
It follows from the definition of the isotropic position that

0= [pads=cu [ P @pla)do(a)
K sn—1

n
for all quadratic polynomials p(z) = 3 a;;z;z; with 3" a;; = 0. In other words, p}’;rQ

1,3 i=1
has no second order term in its spherical harmonic decomposition.
On the other hand,

P52 — (22 4 (n+ 2072 (pxc — ro))| < Cdlpic —rol.

Taking the second order component in the spherical harmonic decomposition of the
expression under the absolute value sign on the left hand side, we get

(n+ 2)r§+1||Y2||L2(Sn,1) < Cllpx — 7oll L2 (sm-1),
SO

Walliasn-ty < C'8lloxc = ollzacsn-sy:
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10. A solution to the fifth Busemann-Petty problem in a small neighborhood of the
Euclidean ball

Recall that for the fifth Busemann-Petty problem we have the equation hyx =
('R[pﬂ_l])_l. By the results of the previous section, the right hand side can be writ-
ten as

—n+1

o T = (n = 1)rg "R(px —10) +7,

where |y'| < CoR|pk — 7ol s0 ||V'||z2(sn-1) < Cd||px — Tol|L2(sm-1)-
Let 97t be the linear operator that maps every m-th order spherical harmonic Z,, to

1-3-...-(m—1)
(n—l)(n—i—l)-...-(n—l—m—S)Zm

vl

—(n—1)RZm=—-(n-1)(-1)
for even m > 4 and to 0 for other m. Then 91 is a strong contraction and

(R — ™) = rg "M (px — 70) || L2(57-1) <

’I";n”YQ”LQ(Sn—I) + ||’y,||L2(Sn—1) < C&”pK — ’1"0||Lz(sn—1)7

so Lemma 4 and Remark 1 yield hx = px = const, i.e., K is a ball, provided that J is
small enough.

11. A solution to the eighth Busemann-Petty problem in a small neighborhood of the
Euclidean ball

We now turn to the equation Ahyx = (R[p} '])"t! (see Section 6). Below we will use
several standard results about A and the Laplace operator which, for completeness, are
proven in the Appendices.

By the results of Section 9, (R[p% !])"*! can be rewritten as rémDEED Lo where
s < €6 and

v=(n-1)(n+1)r{"DODTIR (o — 1) + 4/,

Il L2 (sm-1) < C8llpr = 7ollL2(sm-1)-

Then

hx

Al = T4y DDy

and, provided that § > 0 is small enough, we can apply Lemma 5 (see Appendix II) and
the uniqueness theorem (see [12], Theorem 8.1.1) to obtain
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h
1 = L+¢' + ¢,
To
where
Ay' = ry DD, (15)

(see Appendix II for the definition of E) and

" ll2(sm-1y < erg DDyl Lasn-1) < Cellpr = rollza(sn-)

with as small € > 0 as we want.
Furthermore, the solution of equation (15) splits into ¢} + ¢4 where ¢} solves

Ayl = (n—1)(n+ )y "R(pk — 7o),

and ¢4 solves &gp’Q = r()_("_l)("+l)'y’.

The norm of ¢4 can be estimated immediately:

lpallL2(sn-1y < ClY'[lL2(sm-1) < Cdllpr — Tol|L2(sm-1y-

As to ¢}, it is equal to (see the end of Appendix I)

,’"0_1 Z /“LmYm’

m>2
meven

where pg =70+ Y. Y is the spherical harmonic decomposition of px and

mven
__(n=DHn+1) (—1)F 1-3-...-(m—1)
bm =0 m)m+n—1) m—Dn+1)-...-(n+m—3)’

so pe =1 and |pm| < 1 for m > 4, pm — 0 as m — oo. Since

Y2l 2(sn—1) < Céllpx — 7ol L2(5m-1)s
we conclude that
ey —ra 'M(pk — 7o) || L2(sn-1) < COlpr — To||L2(87-1),
with the strong contraction 9 given by Z,, — pumZm, m even, m > 4; Z, — 0 for all

other m.
Putting all these estimates together, we conclude that

I(hic =1 +Y) = r8M(prc — 7o)l L2 (5m-1) < €llor — TollL2(sn-1y,
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with as small € > 0 as we want, provided that § > 0 is small enough. Now we can apply
Lemma 4 and Remark 1 again to conclude that hx = px = const, so K is a ball.

12. Appendix I. Solving the Laplace equation

Below we shall use the following notation. For a function f : $"~! — R and « € (0, 1),
we shall denote

’

|f(z) = f()]
fllee = 1 fllce(sn-1y = max |f| + sup
171 Ifllo=csns) S”‘1| | ryesn—t,aty T — Y

”f“c'2+°‘ = ||f”c’2+cx(sn—1) =
nax | £l + max |Fe, ()] + B | Pz, | oo (sm-1),

zesSn—1 i=1,...,n

where F(z) = [z[f(7;) is the 1-homogeneous extension of f to R"™\ {0} (we assume that
it is at least C2 in R™ \ {0}).
Let g : S 1 — R be an even C* function on the unit sphere S"~! with some
€ (0,1). Let G be the (—1)-homogeneous extension of g to R™ \ {0}, i.e., G(z) =
|x|_lg(%) for x # 0. We will show that there exists a unique 1-homogeneous even
function F' : R® — R of class L! such that AF = G in R™ in the sense of generalized

loc
functions. Moreover, F' € C2t*(S"~1) and for all 4,5 = 1,...,n, we have

1 Feiay [l L2 (sn-1) < Cllgllasn-y, [[Flloatasn-1y < Cllglloa(sn-r,  (16)
with some C = C(n,a) > 0.
12.1. Uniqueness
If we have two even 1-homogeneous functions Fy, Fs such that AFy; = AF; = G in R",
then F; — Fy is an even 1-homogeneous harmonic function, but the only such function
is 0.

12.2. FEzistence

Now we will show that the function F' defined by

1 1
F(z) = [ - } d
(‘T) CTL / |$ _ yln_Q |y|n_2 g(y) y
Rn
is a well-defined 1-homogeneous function on R™ satisfying AF = G and estimates (16).
Here, ¢, is chosen so that Amc,?—_g = dp (the Dirac delta measure) in the sense of gener-

alized functions, and the integral is understood as lim
R—o00 B(0,R)
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Fig. 2. The functions &;, i = 1,2,3.

In order to show the convergence of the integral, we note that

! 1 :(n_2)<”“”y>+o( L )

[z —y["2  Jyn2 |y|™ [yl™

as y — oo uniformly on compact sets in z.

Since G is even, the integral of %ﬂ—)g(y) over each sphere centered at the origin
vanishes. Since G is (—1)-homogeneous, we have Elﬁg(y) = O(%g,lbl—ff) as y — 0o, which
is integrable at oo.

The singularities at € S"~! and 0 are of degrees —(n —2) and —(n — 1) respectively,
so the local integrability there presents no problem either, and we get the estimate

IFlloesn—1) < Cligllogsn-1y.

The change of variable y — —y and the identity G(y) = G(—y) imply that F' is even.
To show the 1-homogeneity of F', take ¢ > 0 and apply the change of variable y — ty
to write

1 1
F t = Cp 1. — d =
(1) = en i / (|ta:—y|"_2 |y|"—2)g(y) Y
B(0,R)
. 1 1
Cn Rh—r>noo (|tm — ty|n—2 - |ty|"_2)g(ty)d(ty) B
B0,
1 1
at i - dy = tF(x),
ot [ (o= — e 90y = 1P @
B0,

(we used that ]E'}W—_g = tn—l_g];[i—_g, G(ty) = t71G(y), and d(ty) = t"dy).

To estimate ||F|c2+a(sn-1), we split the integral defining F' into 3 parts. Let &,
&, & @ [0,400) — [0,1] be as on Fig. 2, so & are Lipschitz with constant 4, and
&1+ & +E&=1.

Put Gi(z) = G(2)¢i(jal) and

|z —y[n=2 [y

Fi(z) = e / [— |Gy,
s
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s0G=0G1+Gs+Gsand F = F, + F, + Fs.
Our first observation is that Go(y) is an a-Holder, compactly supported function on

R™, with C*-norm bounded by C||g|¢e(sn-1).
Indeed, we clearly have max |Ga| <4 max |g|- On the other hand,

1G2(2) = Galw)| = [€alaDlel o (157) — &2llublul o (70 ) |

Since &(t) = &(t)t! is a compactly supported Lipschitz function on [0, 400), it is also
a-Holder for any a € (0,1), i.e

|€2(t) — Ea(s)| < Clt —s|* forall t,s>0.

Thus, if z,y € B(0,2) \ B(0 ,%), then

&les (%) - &t ()] <
e - &bl Jo ()| + &t |s (5) - ()| <

‘ llgllce(sn-1y <

C"w—y‘ rnaxg+4‘———
ol = b ol + 4| 7 - %

a(gn— — _— = < a(gn— —
Cllglees— (lz = ul* + |17 = 1] ) < Clgllomsnnle — ol
because the mapping z — 7 is C! and, thereby, Lipschitz on B(0,2) \ B(0, 1).
If 2,y ¢ B(0,2) \ B(0,1), then Ga(z) = Ga(y) = 0, so the inequality

|Ga(2) = Ga(y)| < Cllglle(sm-1le -y

) but y ¢ B(0,2)\ B(0,1), then the segment
) at some point ¥, so gg(y) Ga(y')=0

holds trivially. Finally, if z € B(0, 2)\ (0,1
[z, y] intersects the boundary of B(0,2)\ B(0,
and
|Ga(z) — Ga(y)| = |Ga(z) — Ga(¥/)| <
Cllgllcs(sm—lz —¢'1* < Cllgllossnrlz =yl
The functions G; and Gs are supported on B(0, %) and R™ \ B(0, %), respectively, and

satisfy the bound

1
1G1(w)], 19s(y)| < Ty e lgl-
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Now we are ready to estimate ||F||c2+a(gn-1). Consider z with 2 < |z| < 3. Note

that  — W is a C3-function (in z) in this domain with uniformly bounded (in y)

C3-norm as long as y € B(0,1). Hence, F; € C3(B(0,2)\ B(0, %)) and

”FIHCS(W’%)\B(O,%)) < C||g||L1(Sn_1)

(the constant term [ Wg’l (y)dy is also bounded by C||g||p1(sn-1)).
R~

To estimate F3, note that for |z| < 2 and |y| > 2, we have

1 1 c
’ — - — _(n_2)<x7y> S_,
|z — y|™ ly|™ |y|™ |y|™
0 1 Yi C
<z - n-2 L < =
P o e
92 1 C
_2‘ S ITRTSE)
A0z |x — y|" ly|™
and
‘ o3 1 } C
0x;0x ;0T |z — y|n72 a |y|n+1'

Since y %Iy;) and y Tgl% are odd functions, their integrals against the even
function G3(y) over any sphere centered at the origin are 0 and, therefore,

B IVRL IR <C [l IGldy < Cllussny
R~\B(0,3

and

ViR <C / Iyl 1Gs(»)|dy < CllgllLi sm-1),
R~\B(0,3)

SO
||F3||C3(W,%)) < C'||g||L1(Sn_1).

It remains to estimate Fy. We clearly have

1 1
— dy<C n—
o=y =z < Cllslecs—

|Ba(x)] < Cllglleesn—1 /
B(0,2)\B(0,1)

and
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VEy(a)| < Cllgllogsn, /
B(O,Q)\B(O,%)

Wdy < Cllglle(sn-1-

As for (Fy)g,e,, these partial derivatives are images of Gy under certain Calderén-
Zygmund singular integral operators (see [5], Lemma 4.4 and Theorem 9.9), so, since
Go € C*(R™) and has fixed compact support, we obtain that

[(F2) 2, [lca®ry < CllG2lloa®ny < Cllgllca(sn-1y

and

|(F2)za; |2 ®ny < CllG2llL2®ny < CllgllLz(sn-1)-

The final conclusion is that

”F”C“"‘(S"—l) < CHF“CQ-I-Q(3(07%)\3(0’%)) < C”QHC’“(S“—l)

and

”(F2)Iﬂ:j ||L2(S"—1) < C”(F?)zizj ||L2(B(0‘%)\B(07%)) < C||g||L2(S"—1)

(we used the (—1)-homogeneity of (F3)s,z, here).

The desired equality AF = G follows from the fact that the mapping x ',rylln—_g —
Iylﬁ is harmonic in z for |z| < 1, [y| > 3. This implies that AF3 = 0 in B(0,1),
while F; + Fy differs by a constant from the classical Newton potential of the compactly
supported L' function G + Go = G in B(0,1). Hence, AF' = G in B(0,1), and this
identity extends to R™ by homogeneity.

We shall also need the relation between the spherical harmonic decompositions of
Fl|gn-1 and g. To this end, we will start with the following computation. Let P,, be a
homogeneous harmonic polynomial of degree m, so that Y;, = Pp|sn-1 is a spherical
harmonic of degree m. The 1-homogeneous extension of Y, is Yy () = |@|*"™ P (z).
Then

AV (2) = Al ™) P(2) + 2{V(|2]' ™), VPu(2)) =

(1 —m)(—m — 1 +n)|z| ™ 1P, (z) +2(1 — m)|w|_m%Pm(x) =

|z| == (1 — m)(—m — 1+ n +2m) P, (z) =
(1 —m)(m+n—1)|z|"1"™P,(z).
Thus, if g € L2(S" ) and g = Y Y, on S"1, the series

m>0
meven
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1 -
F = Yo
mzzo (I-m)(m+n-1)

converges in L2 . (the series is orthogonal on every ball B(0,R) and Vo L2(B(0,R))

< Cg||Yml[L2(sn-1)) and formally solves AF = G. To show that it is a true solution,
it suffices to observe that we have AF = G for the partial sums F;y and Gy of
the corresponding series and F;) — F in L., Goy — G in L}. as | — oo. Thus,
AF = G in the sense of generalized functions. If g € C*(S™~1), then, by the uniqueness
part, this solution has to coincide with the explicit solution constructed above, so the
spherical harmonic decomposition of F|gn-1 is Y

m>0
meven

ml’m. In particular, the

decomposition implies that
1F |2 (sm-1) < llgllz2(sn-1)-
13. Appendix II. Solution of Monge-Ampere equation

For a function f : S»~! — R, we denote by F its 1-homogeneous extension to R™.
n . -~
By Af we will denote the restriction of ) det Fj, to the unit sphere where Fj, is the
k=1
matrix obtained from the Hessian F' = (Fj,.; )7 ;1 by deleting the k-th row and the k-th
column.

We now turn to the solution of the equation Af = g where g is close to 1. Note that

Al = 1. Indeed, since A commutes with the rotations of the sphere, we can check this

identity at the point (1,0,...,0). The 1-homogeneous extension of 1 is |z|, so the Hessian
is (ﬁ - %) , which at the point (1,0,...,0) turns into
E I P
[0 0 0 0 0]
0 10 0 0
0 0 1 0 0
000 .. 10
00 0 ... 0 1]

The rotation invariance also allows us to compute the linear part of Af (meaning
the linear terms in ®,,,) for f =14 ¢, where ® is the 1-homogeneous extension of ¢.
Again, computing the Hessian at (1,0,...,0), we get

(I)zim <bz1I2 s (I)len
ﬁ _ Tory 1 + ?1‘21‘2 ... q)zzzn 7
\‘élnl‘l ¢1n12 A 1 + ¢Inan

SO
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n n
> det F, =det Fy + ) det F; =
i=1 i=2

1+ Z (I)LI«. + (n - 1)<I)I1Z1 + P(q))a
i=2

where P(®) is some linear combination of products of two or more second partial deriva-
tives of ®. Note now that, since ® is 1-homogeneous, the mapping ¢t — ®(¢,0,...,0) is

n
linear and, thereby, ®,,,,(1,0,...,0) = 0. Thus we can just as well write > ®,,., +
i=2
(n—1)®,,., at (1,0,...,0) as AP(1,0,...,0). However, AP also commutes with rota-

tions, so we have the identity

Y det F; =1+ A® + P(®)

i=1

in general, though P(®) will now be a sum of products of at least two second partial
derivatives of ® and some fixed functions of x that are smooth near the unit sphere.
Using identities of the type

alag...am—blbg...bm:(al—bl)ag...am—i—

bl(G,Q — b2)0,3 ceiQy o by bm_g(am_l — bm_l)am +by... bm_l(am — bm),
we see that for any 1-homogeneous C2-functions U/, U” satisfying
max 195z, lca(sn-1y < 1, H}2X||‘I’gia:j||0a(swl) <1
we have
[P(2’) — P(U")||p2(sn-1) < (17)
anlajx V%0, — Uaya, lL2(sm-1) H}E}X<||‘I"ziz,- leesn-1) + V7,4, ||C(sn—1))
and
IP(") — P sn—s) < (18)
CH}%X ||‘I’§mj - ‘I’gﬂj e (sm-1) H}3X<||‘I"x,-x,- llca(sn-1) + ||‘I’irliz,- ||ca(sn—1))-

This will enable us to solve the equation Af = g with ¢ = 1+ 7 by iterations if
7]l ce(gn—1) is small enough.

By A f we shall denote the restriction of the Laplacian AF of F' to the unit sphere.
Note that the Laplacian AF itself is a (—1)-homogeneous function on R™\ {0} (assuming
again that F' is twice continuously differentiable away from the origin).
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Lemma 5. For every ¢ > 0, there exists § > 0 such that for every even g = 1 + v with
[Vllca(sn-1) < 9, there exists f = 14 ¢ solving Af = g and such that ||p| co+a(gn-1) < €

and, moreover, ¢ = ' 4+ ¢", where Ap' =y, while ||¢"||L2(sn-1) < e|V|| L2(sn-1)-
Proof. Define the sequence ¢, as follows: ggoo =, Egol =v—P(dy), 5@2 =y—P(dy),
etc., where as before, ®,, is the 1-homogeneous extension of ¢,,,. Recall that by the results

of Appendix I, for every even function x € C%(S"~1), there exists a unique solution 1
of the equation Ay = x and we have the estimates

[llcota(sn-ty < Klixlloa(sn-1),  max Ve, 21y < Klixllo(sm-1)
with some constant K > 0. So, all ¢, are well-defined.

Let 0 > 0 be a very small number. Then, under the assumption ||v||ca(gn-1) < d, we
have

”900||C2+°‘(S"—1) < K“’Y“ca(sn—l) < K.

Fix € (0, %). It follows from (18) that as long as

1 lozsesn-ys I8 levasns) < 5550
we have
[P(¥') = P(B")||ga(sn-1) < Kl[Y" — 9" [|cora(sn-1).
If 6 is small enough, so that Ko < 55, we obtain
| P(®0)||ca(sn-1y = [|P(®o) — P(0)||ga(sn-1) < KKO.
Hence, from &((pl — o) = —P(®o), we conclude that
llpr — 900||c2+a(sn—1) < K(kK)é,
SO
le1llcate(sn-1y < K(1 4 kK)o.
If this value is still less that 5z, we can continue and write
[P(®1) — P(®o)|ce(sn-1) < Kllp1 — pollcora(sn-1y < (KK)?0.

Thus, from &(902 — 1) = —(P(®1) — P(®0)), we get
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o2 — pillota(sn-1y < K(kK)?9,
||S02||C2+a(5‘n—1) < K(l + kK + (HK)2)(5,
and so on. We can continue this chain of estimates as long as

K(1+ kK + (kK)? +--- 4+ (kK)™)d < 30"

. . . K& K
which is forever if =55 < 5.
The outcome is that

||(pm+1 - Somllc2+a(sn,1) S K(K)K)"H’l(s,
[P(®mi1) — P(Pm)lcota(sn-1y) < (KK)™+26.

It follows that the sequence ¢, converges in C?T¥(S"~1) to some function ¢ €
C?te(Sn—1) with

K
[ellgota(sn-1) < 1K <¢

if § > 0 is small enough. This function ¢ will solve the equation E(p =y — P(®), ie,
the function f =1+ ¢ will solve Af = g.
We put ¢ = ¢o and ¢” = ¢ — @o. It remains to estimate ||¢”||L2(gn-1) =
lo — wollL2(sn-1). To this end, we shall use (17) instead of (18) to obtain
[P(®o)llL2(sm-1) = [[P(R0) — P(0)[| 2(sn-1) <
< max [(®0)asa; | L2(s7-1) < EK|[V[|12(57-1),

so from the equation &(cpl — o) = —P(®p), we obtain
o1 = woll2(sm-1y < [[P(Po)llL2(sn-1) < KEY] L2 (sm-1y
and
[(@1)z.2;, — (P0)ziay [l L2(sm-1) < K[[P(®o)l|L2(sn-1) < K(KK)||Vl|L2(5m-1)-
Then
[P(®1) — P(®o)llr2(sm-1) < (KK)?|¥]l12(57-1),

and we can continue as above to get inductively the inequalities

lem+1 — @mllL2(sn-1y < (KK)™ |yl L2(sn-1y,
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||(q>m+1)z¢m,~ - (‘bm)mimj ”L?(S”—l) < K(RK)mH”’Y”L?(S"—i)

(that requires the estimate max [|(®m)z,z, [[c(sn-1) < 56, but we have already obtained
1"«7

that bound even for the C?**norm of ¢,,).
Adding these estimates up, we get

oo
e — ol L2(sm-1y < Z lem+1 — @mllL2(sn-1y <
m=0

> kK
E K)m+t ety = ——— -
m=o(m ) ||7||L2(s DT 1 RK ||7||L2(s 1y,

and it remains to choose x > 0 so that 7 ffK <e O
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