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Abstract. Let d ≥ 2 and let K and L be two convex bodies in Rd

such that L ⊂ intK and the boundary of L does not contain a segment.
If K and L satisfy the (d + 1)-equichordal property, i.e., for any line l
supporting the boundary of L and the points {ζ±} of the intersection of
the boundary of K with l,

distd+1(L ∩ l, ζ+) + distd+1(L ∩ l, ζ−) = 2σd+1

holds, where the constant σ is independent of l, does it follow that K
and L are concentric Euclidean balls? We prove that if K and L have
C2-smooth boundaries and L is a body of revolution, then K and L are
concentric Euclidean balls.

1. Introduction

Let d ≥ 2 and let K and L be two convex bodies in Rd such that L ⊂ intK
and the boundary of L does not contain a segment. For any line l supporting
L we consider two points ζ± of the intersection of the boundary of K with
l. Given i ∈ R we say that the bodies K and L satisfy the i-equichordal
property if there exists a constant σ independent of l such that

(1) disti(L ∩ l, ζ+) + disti(L ∩ l, ζ−) = 2σi,

(see Figure 1). If i = 0 we replace (1) with

(2) dist(L ∩ l, ζ+)dist(L ∩ l, ζ−) = σ2,

(cf. [Ga], page 233).

Problem 1. Let d ≥ 2 and i ∈ R. Are two concentric Euclidean balls the
only pair of bodies in Rd satisfying the i-equichordal property?

Similar questions to that of the problem above were raised in [Sa], [BaL],
[CFG, A1, page 9], [YZ]; see also [RYZ] and references therein. In particular,
it is known that the answer to Problem 1 is affirmative for d ≥ 3, provided
L is a Euclidean ball, [BaL].

We would also like to mention several results related to the connection
between Problem 1 and Problem 19 of Ulam from the Scottish book, which
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Figure 1. We have disti(L ∩ l, ζ+) + disti(L ∩ l, ζ−) = 2σi.

asks if a solid of uniform density which floats in water in every position is
necessarily a sphere, [M, page 90], [CFG, A9, page 19].

The plane counterexamples to Ulam’s problem constructed in [A], [Weg1],
[Weg2], show that for d = 2, i = 1, the answer to Problem 1 is negative,
even under the additional assumption that for every line l supporting L, the
point of tangency L∩ l divides the chord K∩ l into two parts of equal length.
On the other hand, it is known [BMO] that, under this division assumption
and under the assumption that l divides the boundary of K in constant

ratio µ(σ)
1−µ(σ) for µ = 1

3 , µ = 1
4 , µ = 1

5 , and µ = 2
5 , the answer to Problem

1 is affirmative; see also [Od]. Additionally, if d ≥ 3, and if for every line l
supporting L the point L∩ l divides the chord K ∩ l into two parts of equal
length, then the answer to Problem 1 is affirmative, [O]. Finally, we remark
that a negative answer to Problem 1 in the case i = d + 1, d ≥ 3, presents
a possibility for a negative answer to Ulam’s conjecture, [R1], [R2].

In this paper we prove the following result.

Theorem 1. Let d ≥ 3 and let K and L be two convex bodies in Rd of class
C2 satisfying the (d + 1)-equichordal property. If L is a body of revolution,
then K and L are concentric Euclidean balls.

A similar result can be proved for general i-equichordal property, i ∈
R. Since our interest in Problem 1 comes, partly, from its relation to the
Problem of Ulam, and since, in our opinion, the proof for i 6= d+ 1 does not
add to the ideas when L is a body of revolution, we restrict ourselves to the
case i = d+ 1.
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Notation and basic definitions. Let d ≥ 2. A convex body K ⊂ Rd is
a convex compact set with a non-empty interior intK. We denote by Bd(r)
the Euclidean ball centered at the origin of radius r > 0. Given ξ ∈ Sd−1

we put ξ⊥ = {p ∈ Rd : p · ξ = 0} to be the subspace orthogonal to ξ, and
p · ξ = p1ξ1 + · · ·+ pdξd is the usual inner product in Rd.

We say that a line l is a supporting line of a convex body L if L ∩ l 6= ∅,
but intL ∩ l = ∅.

Let m ∈ N. We say that a convex body K in Rd is of class Cm if for every
point z on the boundary ∂K of K ⊂ Rd there exists a neighborhood Uz of
z in Rd such that ∂K ∩ Uz can be written as a graph of a function having
all continuous partial derivatives up to the m-th order.

2. Auxiliary statements, K and L are the bodies of revolution
about the same axis in R3

At first we introduce some convenient notation that helps to work with
bodies of revolution.

Let K ⊂ R3 be a body of revolution about the x-axis with C3 boundary
described by a function η = f(ξ) ≥ 0 supported by the segment [−R1, R2].
Assume also that L is a body of revolution about the same axis, and its
boundary is described by the function η = g(ξ) ≥ 0 supported by the seg-
ment [−r1, r2] ⊂ (−R1, R2) (See Figure 2).

Z

Xα

l(s)

g
h

(a(s))

(s)a

(s)
η=g(ξ )

η= f(ξ )

R2-R1 r2- r1

K
L

Figure 2. K ∩ {(x, y, z) : y = 0} and L∩ {(x, y, z) : y = 0}
with their boundaries described by the graphs of functions
η = f(ξ) and η = g(ξ).

We will denote by Hs the plane parallel to the y-axis and containing the
line l(s) = {(ξ, 0, sξ + h(s)) : ξ ∈ R}, where l(s) is tangent to the graph of
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g at the corresponding point (a(s), 0, g(a(s))), s = tanα with α ∈ (−π
2 ,

π
2 )

being the angle between the x-axis and l(s), and h(s) is the z-intercept of
l(s).

Let s ∈ R be fixed and let `s be the line parallel to the y-axis passing
through (a(s), 0, g(a(s))). Since the section K∩Hs is symmetric with respect
to the line l(s), the chord Gs = K ∩ `s is divided by (a(s), 0, g(a(s))) into
two parts of equal length σ.

Let s ∈ R and a(s) ∈ (−r1, r2). Since K is a body of revolution, the chord
of length 2σ can be inscribed into a circle of radius f(a(s)) only provided

g(a(s)) =
√
f2(a(s))− σ2

(see Figure 3). Since K ∩ {(x, y, z) ∈ R3 : x = −r1, r2} are discs of radius
σ, we have

(3) f(−r1) = f(r2) = σ, g(ξ) =
√
f2(ξ)− σ2 ∀ξ ∈ [−r1, r2].

Translating the bodies if necessary, we can and do assume that a(0) = 0.

(a(s),0,0)

f(a(s))

f(a(s))
g(a(s))

σσ

l
Figure 3. The section K ∩ {(x, y, z) : x = a(s)}. We have

g(a(s)) =
√
f2(a(s))− σ2.

2.1. Some results on the (d+1)-equichordal plane bodies symmetric
with respect to the axis. Let P ⊂ R2 be a convex body containing the
origin in its interior with C3-smooth boundary. Assume also that P is
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symmetric with respect to the x-axis and it satisfies the (d+ 1)-equichordal
property with respect to the origin, i.e., there exists a constant σ such that

∀θ ∈ S1 ρd+1
P (θ) + ρd+1

P (−θ) = 2σd+1, for some d ≥ 3.

If the upper part of the boundary of P is described by a graph of a
positive function φ on [−τ1, τ2], then by the Pythagorean Theorem and the
symmetry with respect to the x-axis, the function φ satisfies

(4) (x2 + φ2(x))
d+1
2 + (y2 + φ2(y))

d+1
2 = 2σd+1,

(see Figure 4). Here y ∈ [−τ1, 0], τ1 > 0, and x ∈ [0, τ2], τ2 > 0, are such
that

φ(x)

x
=
φ(y)

|y|
,

i.e.,

(5) |y|d+1 =
(2σd+1 − (x2 + φ2(x))

d+1
2 )xd+1

(x2 + φ2(x))
d+1
2

.

To simplify the computations we will write

(6) φ2(x) = σ2 − x2 + χ(x), x ∈ [−τ1, τ2],

where χ is a function we want to determine. By the symmetry of P with
respect to the x-axis, we have φ(0) = σ, hence, χ(0) = 0. We rewrite (4) as

(7) (σ2 + χ(x))
d+1
2 + (σ2 + χ(y))

d+1
2 = 2σd+1, y ∈ [−τ1, 0], x ∈ [0, τ2].

0
x

(x,φ(x))

y

(y,φ(y))

P

τ2_ τ1

'

I

Figure 4. The equichordiality of P .
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Let

(8) q(z) =
χ(z)

σ2
=
φ2(z) + z2 − σ2

σ2
=
φ2(z) + z2

σ2
− 1.

Then conditions (7) and (5) can be written as

(9) (1 + q(x))
d+1
2 + (1 + q(y))

d+1
2 = 2.

(10) |y|d+1 =
(2σd+1 − (σ2 + χ(x))

d+1
2 )xd+1

(σ2 + χ(x))
d+1
2

=
(2− (1 + q(x))

d+1
2 )xd+1

(1 + q(x))
d+1
2

.

Our first lemma is technical, but it is crucial for our further considerations.

Lemma 1. Let χ be as in (7), where y is as in (10). Then

(11) 2σ2χ′′(0) + (d+ 1)(χ′(0))2 = 0.

Proof. Since q(0) = 0, we can assume that there exists a neighborhood U0

of the origin such that |q(x)| < 1 for all x ∈ U0. Using (10) we see that for
y < 0 and x > 0 we have

(12) |y| = x
(2− (1 + q(x))

d+1
2 )

1
d+1

(1 + q(x))
1
2

∀x ∈ U0.

We will show at first that

(13) |y| = x
(

1− ε1x+
(
− ε2 +

3− d
4

ε2
1

)
x2 + o(x2)

)
, ∀x ∈ Vo,

where V0 ⊂ U0 is a neighborhood of the origin that will be chosen later and
εj , j = 1, 2, are the Taylor coefficients of the decomposition of q near the
origin,

(14) q(x) = ε1x+ ε2x
2 + o(x2), εj =

q(j)(0)

j!
=
χ(j)(0)

σ2j!
, x ∈ V0.

To prove (13), we compute the first and second derivatives of the function

(2− (1 + z)
d+1
2 )

1
d+1

(1 + z)
1
2

.

Routine calculations show that they are equal to −1 and 3−d
4 respectively,

and we can express y via x up to the terms of the second order,

|y| = 1− q(x) +
3− d

4
q2(x) + o(q2).

Now we will use (14) and the previous decompositions to obtain

|y| = x
(

1− (ε1x+ ε2x
2) +

3− d
4

(ε1x+ ε2x
2)2 + o(x2)

)
.

This gives (13).
Next, we use (13) to obtain two relations that will lead to (11). We see

that

(15) x− |y| = ε1x
2 + o(x2).
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Since
y2 = x2(1− 2ε1x) + o(x3),

we also have

(16) x2 + y2 = 2x2 + o(x2).

Using Taylor’s decomposition,

(17) (1 + z)
d+1
2 = 1 +

d+ 1

2
z +

d2 − 1

8
z2 + o(z2), |z| < 1,

and applying it for q(x) and q(y), the sum of these and (9) results in

0 =
d+ 1

2
(q(x) + q(y)) +

d2 − 1

8
(q2(x) + q2(y)) + o(q2(x)) + o(q2(y)).

This and (14) yield

0 =
d+ 1

2
(ε1x+ ε2x

2 − ε1|y|+ ε2y
2) +

+
d2 − 1

8
((ε1x+ ε2x

2)2 + (−ε1|y|+ ε2y
2)2) + o(x2)

=
d+ 1

2
(ε1(x− |y|) + ε2(x2 + y2)) +

d2 − 1

8
ε2

1(x2 + y2) + o(x2)

=
d+ 1

2
ε1(x− |y|) +

(d2 − 1

8
ε2

1 +
d+ 1

2
ε2

)
(x2 + y2) + o(x2).

It remains to apply (15) and (16) to obtain

0 =
d+ 1

2
ε2

1x
2 +

(d2 − 1

8
ε2

1 +
d+ 1

2
ε2

)
2x2 + o(x2).

Therefore, (d+ 1

2
+
d2 − 1

4

)
ε2

1 + (d+ 1)ε2 = 0,

or
(d+ 1)ε2

1 + 4ε2 = 0.

This gives the desired result by (8). �

2.2. Auxiliary formulas describing the boundary of the horizontal
section P = K ∩ H0. We use the notation from the previous subsection.
If f describes the boundary of K, and φ describes the boundary of the
horizontal section K ∩H0 − (0, 0, g(0)), then

(18) f2(x) = φ2(x) + g2(0) = φ2(x) + f2(0)− σ2, ∀x ∈ [−τ1, τ2],

(see Figure 5).
Observe that if σ is sufficiently close to zero, then [−τ1, τ2] ⊂ [−r1, r2].

On the other hand, if σ is large enough, then [−r1, r2] ⊂ [−τ1, τ2]. The next
lemma shows that in general we have only these possibilities.

Lemma 2. We have [−r1, r2] ⊆ [−τ1, τ2] or [−τ1, τ2] ⊆ [−r1, r2].



8 D. RYABOGIN

R2
_R1

K

L

0 r2
_ r1 x τ2

_ τ1
f(x)

φ(x)

f(x) 

g(0) K H0

Figure 5. We have f2(x) = φ2(x) + g2(0) = φ2(x) + f2(0)− σ2.

Proof. Assume the contrary, we have

(19) −r1 < −τ1, r2 < τ2, or − τ1 < −r1, τ2 < r2.

We will show that the first case in (19) is not possible, the proof that the
second one is not possible either is similar.

To this end, consider the horizontal chord inscribed into ∂K and tangent
to the graph of g at (0, 0, g(0)). We have f(−τ1) = f(τ2) = g(0), and
f(r2) > f(τ2), otherwise, the points (R2, 0, 0), (τ2, 0, f(τ2)) and (r2, 0, f(r2))
are on the boundary of K, which contradicts its convexity. On the other
hand, by (3) we have f(−r1) = f(r2) = σ. Hence, f(−r1) > f(−τ1). This
contradicts the convexity of K, for, the points (−R1, 0, 0), (−r1, 0, f(−r1)),
and (−τ1, 0, f(−τ1)) must lie on its boundary. �

Let

A = s
√
f2(a(0))− a2(s) + χ(a(s))− σ2,

where for every s ∈ R we have a(s) ∈ (−r1, r2).

Lemma 3. Let s ∈ R, a(s) ∈ (−r1, r2) ∩ (−τ1, τ2) be fixed, and let x, y be
so small that a(s) + x, a(s) − y ∈ (−r1, r2) ∩ (−τ1, τ2). Then (7) and (9)
hold for these x, y, with

χa(x) = −2(a+A)x+ χ(a+ x)− χ(a)

instead of χ, and qa(x) = χa(x)
σ2 instead of q.
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g(a(s))

L

xs

R_ a(s)+x

f(a(s)+x)

f(a(s)+x)

K

K Hs

a(s)_r1 r2

x

2R1

x   1+s 2 ψ(x   1+s 2 )

:

Figure 6. We have ψ2(x
√

1 + s2) = f2(a(s) + x)− (g(a(s)) + xs)2.

Proof. Fix any s ∈ R and a(s) ∈ (−r1, r2) ∩ (−τ1, τ2). We can assume that
the boundary of K ∩Hs is described by a positive function ψ satisfying the
(d+ 1)-equichordal property (we pick (a(s), 0, g(a(s)) as the origin in Hs),

(20) (x2(1 + s2) + ψ2(x
√

1 + s2))
d+1
2 +

+ (y2(1 + s2) + ψ2(y
√

1 + s2))
d+1
2 = 2σd+1,

where

ψ(x
√

1 + s2)

x
=
ψ(y
√

1 + s2)

|y|
.

This gives

(21) |y|d+1 =
(2σd+1 − ((1 + s2)x2 + ψ2(x

√
1 + s2))

d+1
2 )xd+1

((1 + s2)x2 + ψ2(x
√

1 + s2))
d+1
2

,

and x and y are so small that the conditions of the lemma are satisfied.
By the Pythagorean theorem (see Figure 6), the assumption a(0) = 0,

and (18), we have

ψ2(x
√

1 + s2) = f2(a(s) + x)− (g(a(s)) + xs)2

= f2(0)− σ2 + φ2(a(s) + x)− (
√
f2(a(s))− σ2 + sx)2

= f2(0)− σ2 + φ2(a(s) + x)− (
√
f2(0) + φ2(a(s))− 2σ2 + sx)2.
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Therefore, using (6) we have

x2(1 + s2) + ψ2(x
√

1 + s2)

= x2 + f2(0)− σ2 + φ2(a(s) + x)− (f2(0) + φ2(a(s))− 2σ2)−

− 2xs
√
f2(a(s))− σ2

= x2 + φ2(a(s) + x) + σ2 − φ2(a(s))− 2xs
√
f2(a(s))− σ2

= x2 + φ2(a(s) + x) + σ2 − φ2(a(s))− 2xs
√
f2(a(0)) + φ2(a(s))− 2σ2

= σ2 − 2a(s)x+ χ(a(s) + x)− χ(a(s))− 2xA.

Substituting the last expression into (20) with y defined by (21), we have

(σ2 − 2a(s)x+ χ(a(s) + x)− χ(a(s))− 2xA)
d+1
2 +

+ (σ2 + 2a(s)y + χ(a(s)− y)− χ(a(s)) + 2yA)
d+1
2 = 2σd+1,

where

|y|d+1 = xd+1 2σd+1 − (σ2 − 2(a+A)x+ χ(a+ x)− χ(a))
d+1
2

(σ2 − 2(a+A)x+ χ(a+ x)− χ(a))
d+1
2

.

This gives the desired result. �

Corollary 1. Let s ∈ R be fixed and such that a = a(s) ∈ (−r1, r2) ∩
(−τ1, τ2). Then

(22) 2σ2χ′′(a) + (d+ 1)(χ′(a)− 2(a+A))2 = 0,

where A is as in the previous lemma.

Proof. By the previous lemma, we have (9) and (12) with qa instead of q
and χa instead of χ, χa(0) = 0. This gives (11) with χa instead of χ, which
is the desired result. �

2.3. Consequences of the concavity of χ on (−r1, r2) ∩ (−τ1, τ2). Our
next goal is to show that

(23) χ(a) = 0 ∀a ∈ [−r1, r2] ∩ [−τ1, τ2].

The proof of (23) is contained in the following three statements.

Lemma 4. Let λ1 > 0, λ2 > 0 be such that [−λ1, λ2] ⊆ [−τ1, τ2] and

(24) (σ2 + χ(−λ1))
d+1
2 + (σ2 + χ(λ2))

d+1
2 = 2σd+1.

If χ ≤ 0 on [−λ1, λ2], then χ = 0 on [−λ1, λ2]. In particular, if χ ≤ 0 on
[−τ1, τ2], then τ1 = τ2 = σ.
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Proof. By (6), we have

0 ≤ −χ(x) ≤ σ2 − x2 ≤ σ2, x ∈ [−λ1, λ2].

By (24) we can assume that for all x ∈ (0, λ2] and for the corresponding
y ∈ [−λ1, 0) we have the equality in (7). If χ(x) < 0, then the left-hand side
of this equality is strictly less than 2σd+1. Hence, χ = 0 on [−λ1, λ2].

Assume now that [−λ1, λ2] = [−τ1, τ2]. Since

τ
d+1
2

1 + τ
d+1
2

2 = 2σ
d+1
2 ,

by (6) we have two possibilities

(25) τ1 ≤ σ, τ2 ≥ σ, χ(σ) = φ2(σ) ≥ 0,

or

(26) τ1 ≥ σ, τ2 ≤ σ, χ(−σ) = φ2(−σ) ≥ 0.

We will consider case (25), the proof for (26) is similar. By (25), χ(σ) = 0.
Hence, φ(σ) = 0 and [0, τ2] = [0, σ], i.e., τ2 = σ. This gives τ1 = σ and the
lemma is proved. �

Lemma 5. Let χ satisfy (22), χ(0) = 0, and let χ′(0) = 0. Then χ = 0 on
[−r1, r2] ∩ [−τ1, τ2].

Proof. Using (22) we have χ′′(a) ≤ 0 for all a ∈ (−r1, r2) ∩ (−τ1, τ2), i.e., χ
is concave down on (−r1, r2) ∩ (−τ1, τ2). Then using the conditions of the
lemma we get χ ≤ 0 on [−r1, r2] ∩ [−τ1, τ2].

Now we apply Lemma 4.
If [−τ1, τ2] ⊂ [−r1, r2] we put λ1 = τ1, λ2 = τ2.
Let [−r1, r2] ⊂ [−τ1, τ2]. Consider the maximal segment [−λ1, λ2] ⊆

[−r1, r2] for which (24) holds. We can assume that λ1 = r1 and λ2 ≤ r2

(the proof in the case λ2 = r2, −λ1 ≥ −r1 is similar). By Lemma 4 we have
χ = 0 on [−λ1, λ2]. Therefore, using (3), (6) and (18) we have

g2(x) = f2(x)− σ2, φ2(x) = σ2 − x2, f2(x) = σ2 − x2 + g2(0),

for all x ∈ [−λ1, λ2]. We recall that a(0) = 0. Since for all y ∈ [−λ1, 0] we
have

|(0, 0, g(0))− (y, φ(y), g(0))| = σ,

by the (d+ 1)-equichordal property we also have

|(0, 0, g(0))− (x, φ(x), g(0))| = σ ∀x ∈ [0, λ2].

This gives λ2 = −λ1 and L must be a Euclidean ball, i.e., we can assume
that r2 = λ2. �

Lemma 6. We have χ′(0) = 0.

Proof. We recall that χ(0) = 0. Assume the contrary, that χ′(0) 6= 0. Let
χ′(0) < 0 (the proof for the case χ′(0) > 0 is similar).

By (22) we can assume that χ is concave down. Hence, there exists ε > 0
such χ > 0 on (−ε, 0) (we recall that a(0) = 0).



12 D. RYABOGIN

Let Q = {(x, y, z) : |y| ≤ σ, x ≤ 0}, and we recall that Gs = K ∩ `s is a
chord centered at (a(s), 0, g(a(s)), parallel to the y-axis, and inscribed into
∂K (Gs is of length 2σ).

By symmetry with respect to the xz-plane the ends of Gs, s ≥ 0, must
belong to ∂Q∩ ∂K. We will show that for some small s > 0 this is not true
and, by this, will obtain a contradiction.

To this end, let 0 < ε1 < ε be so small that for ξ ∈ (−ε1, 0) we have

(27) φ2(ξ) = σ2 + χ′(0)ξ + o(ξ) > σ2 ∀ξ ∈ (−ε1, 0),

where o(ξ) is the remainder from the Taylor decomposition of φ. This shows
that the points on the curve γ− = {(ξ,−φ(ξ), g(0)): ξ ∈ (−ε1, 0)} ⊂ ∂K
do not belong to Q. By the symmetry of K ∩ H0 with respect to the
line K ∩ H0 ∩ {(x, y, z) ∈ R3 : y = 0}, the points on the curve γ+ =
{(ξ, φ(ξ), g(0)) : ξ ∈ (−ε1, 0)} ⊂ ∂K do not belong to Q either.

Define the plane set

B = convhull(γ−, γ+)

= {(ξ, y, g(a(0))) ∈ R3 : −ε1 < ξ < 0 − φ(ξ) ≤ y ≤ φ(ξ)} ⊂ K ∩H0,

and let A = convex hull(K ∩Q,B). By convexity of K we have A ⊂ K. We
claim that for some s > 0 small enough, the ends of Gs are not on ∂Q∩∂K,
which is a contradiction.

(0,0,g(0))

σ

σ

G

η=g(ξ)

T

K

K

(-ε ,0,g(0))2

(-ε ,0,g(0)
2 )2

0

Gso

(a(s ),0,g(s )))o o

I
Figure 7. The chord Gso intersects intT , but it is longer
than 2σ.

Indeed, let 0 < ε2 < ε1. Consider a triangle T with with vertices

(0, 0, g(0)), (−ε2, 0, g(0)), (−ε2, 0,−g(0)
2 ), and let G(x,0,z) be a chord in-

scribed into ∂K, parallel to the y-axis and passing through (x, 0, z) ∈ intT .
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If ε2 is small enough and (x, 0, z) ∈ intT , then the ends of G(x,0,z) are not
in Q and by (27) its length exceeds 2σ. Since g is concave, we can find so =
so(ε2) > 0 so small that a(so) ∈ (− ε2

2 , 0), and (a(so), 0, g(a(so))) ∈ intT . In
other words, the chord Gso intersects intT (see Figure 7). But as we noticed
above, the length of Gso exceeds 2σ, a contradiction. The proof in the case
χ′(0) < 0 is complete.

The case χ′(0) > 0 can be proved similarly, one has only to consider
a(so) > 0 for which χ(a(so)) > 0 and s < 0, and to take Q = {(x, y, z) :
|y| ≤ σ, x ≥ 0}. The lemma is proved. �

2.4. Conclusions. Let K and L be two bodies of revolution about the x1-
axis in R3 satisfying the conditions of Theorem 1. We recall that a(0) = 0,
and by (23) we know that χ = 0 on [−r1, r2] ∩ [−τ1, τ2]. This means that
φ2(x) = σ2 − x2 for all x ∈ [−r1, r2] ∩ [−τ1, τ2], and (18) yields

(28) f2(x) = φ2(x) + f2(0)− σ2 = f2(0)− x2

for all x ∈ [−r1, r2] ∩ [−τ1, τ2]. Moreover, (3) and (28) yield

(29) g(x) =
√
f2(0)− x2 − σ2

for all x ∈ [−r1, r2] ∩ [−τ1, τ2], and

g(−r1) = g(r2) = 0, r1 = r2 =
√
f2(0)− σ2,

provided [−r1, r2] ⊆ [−τ1, τ2].

3. Auxiliary statements, the versions of Theorem 1 of Barker
and Larman, [BaL, pgs. 83-84]

Lemma 7. Let K ⊂ R3 and L ⊂ R3 be two convex bodies of revolution
about the x-axis. Assume as above that their boundaries are described by f
and g and satisfy (28) and (29). Then K and L are concentric Euclidean
balls of radii f(0) and g(0).

Proof. Let Π be the xz-plane, and let K∩Π and L∩Π be the corresponding
sections. Observe that since K and L are the bodies of revolution, the sets
K ∩Π and L ∩Π are symmetric with respect to the x-axis.

We will set up a certain 2-dimensional sweeping procedure in which the
ends of the chords, that are tangent to the circular part of ∂L ∩ Π and
inscribed into ∂K ∩ Π, will sweep out the corresponding circular arcs on
∂K∩Π. Then, we will show that these arcs comprise ∂K∩Π, thus concluding
that K ∩Π and L ∩Π are concentric discs.

Case 1: [−r1, r2] ⊆ [−τ1, τ2]. As we just mentioned, L ∩ Π is a disc of

radius g(0) =
√
f2(0)− σ2 = r1 = r2. We will show that K ∩Π is a disc of

radius f(0).
Let J1 = [ζ1

l , ζ
1
r ] be the chord inscribed into ∂K ∩ Π and tangent to

∂L ∩ Π at (a1, g(a1)), and such that its left end is ζ1
l = (−g(0), f(−g(0)),

and right end is ζr1 = (b1, d1). We have two possibilities, d1 = f(b1) > 0 or
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Figure 8. The first steps in the sweeping procedure in the
case [−r1, r2] ⊆ [−τ1, τ2]. On the left ζ1

r is below the x-axis,
and on the right it is above the x-axis.

d1 = −f(b1) < 0 (ζ1
r is below or above the x-axis, see Figure 8). Consider

the arcs

B1 = {(a, f(a)) : a ∈ [−g(0), g(0)]}, β1 = {(a, g(a)) : a ∈ [−g(0), g(0)]},

of concentric circles, and let J 1(b) = [ζ1
l (b), ζ1

r (b)] be the chord inscribed into
∂K ∩ Π and tangent to ∂L ∩ Π at (b, g(b)) ∈ β1 for b ∈ [a1, g(0)]. Since the
distance between (b, g(b)) and ζ1

l (b) is σ, J 1(b) is divided by (b, g(b)) into two
parts of equal length. Hence, while the left end of J 1(b) is sweeping out B1

by moving from (−g(0), f(−g(0)) to (g(0), f(g(0))), its right end must move
along the arc of the circle of radius f(0) (from (b1, d1) to (g(0),−f(g(0))))
joining −B1 from the right at (g(0),−f(g(0))).

Let d1 = f(b1) > 0 (ζ1
r is above the x-axis, see the right part of Figure 8).

Then, the right end of J 1(b) for b ∈ [a1, g(0)] sweeps out the circular part
of ∂K ∩Π containing the one joining (f(0), 0) with (g(0),−f(g(0))). By the
aforementioned symmetry of ∂K ∩Π with respect to the x-axis, we see that
the part of ∂K ∩Π lying in the right half-plane is circular. Since the above
procedure is symmetric with respect to the z-axis (we could start with the
chord J1 tangent to ∂L ∩ Π at (−a1, g(−a1)) and follow the sweeping arc
joining (−b1, d1) to (−g(0),−f(−g(0)))), we conclude that ∂K∩Π is a circle
of radius f(0).

Now let d1 = −f(b1) < 0 (see the left part of Figure 8). By the
symmetry, four points (±b1,±f(b1)) are on ∂K ∩ Π and we recall that

f(x) =
√
f2(0)− x2 for x ∈ [−b1, b1]. We will repeat the above procedure
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for the chord J2 inscribed into ∂K ∩Π and tangent to ∂L∩Π at (a2, g(a2)),
0 < a2 < a1, where J2 = [ζ2

l , ζ
2
r ], ζ2

l = (−b1, f(−b1)), ζ2
r = (b2, d2), b2 > b1,

and the arcs B2 = {(a, f(a)) : a ∈ [−b1, b1]}, β1.
We have two possibilities again, d2 = f(b2) > 0, and d2 = −f(b2) < 0.

If d2 = f(b2) > 0, arguing as above, we see that the part of ∂K ∩ Π lying
in the right half-plane is circular, and by the symmetry, ∂K ∩Π is a circle.
If d2 = −f(b2) < 0, taking into account that (±b2,±f(b2)), are on ∂K ∩ Π

and f(x) =
√
f2(0)− x2 for x ∈ [−b2, b2], we repeat the procedure again.

producing the chords J3 = [ζ3
l , ζ

3
r ], 0 < a3 < a2, and etc.

If for some j ≥ 3 we have dj = f(bj) > 0, we finish as above. If, on
the other hand, dj = −f(bj) < 0 for j = 3, 4, . . . , we produce a sequence
of segments {[−bj , bj ]}∞j=1 such that [−bj , bj ] ⊂ [−bj+1, bj+1], and such that

f(x) =
√
f2(0)− x2 for x ∈ [−b, b], b = lim

j→∞
bj .

We can also assume that dj = −f(bj) < −g(0) for all j = 3, 4, . . . .
Indeed, since the points (±bj ,±f(bj)) must be on ∂K∩Π, then the condition
−f(bj) ≥ −g(0) for some j ≥ 3 implies that the chord with its left end at
(−bj , f(−bj)) must have a positive second coordinate for its right end, so
dj+1 = f(bj+1) > 0.

We claim that ∂K ∩Π is a circle. Indeed, let b < f(0) (otherwise, we are
done). If −f(b) ≥ −g(0), then the points (±b,±f(b)) must be on ∂K ∩ Π.
Hence, the chord with its left end at (−b, f(−b)) must have (b, f(b)) for its
right end, f(b) > 0, and we are done.

Finally, let −f(b) < −g(0) and let

b = sup{x ∈ [0, f(0)] : f(x) =
√
f2(0)− x2 on [0, b]}.

Then −f(b) ≥ −g(0), otherwise (±b,±f(b)) are on ∂K ∩ Π, and we can
repeat the procedure, contradicting the definition of b.

This finishes the proof of Case 1.
Case 2: [−τ1, τ2] ( [−r1, r2].
Let Ja = [ζl(a), ζr(a)] be a chord inscribed into ∂K ∩ Π and tangent to

∂L ∩Π at the point (a, g(a)), for some a ∈ (−τ1, τ2) (see Figure 9).
Consider the arcs of concentric circles B1 = {(a, f(a))a∈[−τ1,τ2]} and β1 =

{(a, g(a))a∈[−τ1,τ2]} and observe that for any b ∈ [0, τ2] the distance between
(b, g(b)) and ζl(b) is σ and Jb is divided by (b, g(b)) into two parts of equal
length. Hence, while the left end ζl(b) for b ∈ [0, τ2] is sweeping out the part
of B1 by moving from ζl(τ2) to ζl(0) = (−τ1, f(τ1)), the right end ζr(b) must
move along the arc of a circle of radius f(0) joining B1 from the right at
ζr(0). If we denote the coordinates of ζr(τ2) by (v1, d1), we have (28) and
(29) for all x in the interval [−τ1, v1] strictly containing [−τ1, τ2].

As in Case 1 we have two possibilities, d1 = f(v1) < 0 or d1 = −f(v1) < 0.
If d1 = −f(v1) < 0, we stop the procedure and see that the parts of

∂K ∩Π and ∂L ∩Π, located in the right half-plane are concentric circles.
Let d1 = f(v1) > 0. Denote by α ∈ (0, π2 ) the angle between the tangent

line to ∂L∩Π passing through (R2, 0) and the x1-axis (we recall that (R2, 0)
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Figure 9. The first steps in the sweeping procedure in the
case [−τ1, τ2] ⊆ [−r1, r2]. On the left ζr(τ2) is above the
x-axis, and on the right it is below the x-axis.

is the point of intersection of ∂K with the x-axis). If α1 is the angle between
the line containing Jτ2 and the x1-axis, then v1 − τ2 = σ cosα1, and by
convexity α1 < α. We repeat the process with the larger arcs of concentric
circles B2 = {(a, f(a))a∈[−τ1,v1]} and β2 = {(a, g(a))a∈[−τ1,v1]} instead of
B1 and β1. As above we have two possibilities d2 = f(v2) > 0 or d2 =
−f(v2) < 0 for the corresponding right end (v2, d2) of the chord Jv1 . If
d2 = −f(v2) ≤ 0, we stop. If d2 = f(v2) > 0 we repeat, observing that
v2 − v1 = σ cosα2 for the angle α2 between the line containing Jv1 and the
x1-axis, α2 < α. Proceeding this way, we will construct the corresponding
arcs Bj and βj , j = 3, . . . ,m. If for some j we have dj = −f(vj) < 0 for
the corresponding right end of the chord Jvj−1 , we will stop. Otherwise, we
will proceed with dj = f(vj) > 0 for all j = 3, . . . ,m, and the corresponding
angles αj < α. Since vj − vj−1 = σ cosαj ≥ σ cosα for j = 2, . . . ,m, we will
have

vm = τ2 + (v1 − τ2) + · · ·+ vm − vm−1 ≥ τ2 +mσ cosα ≥ R2,

provided m is large enough. We have proved that the parts of ∂K ∩ Π and
∂L ∩Π, located in the right half-plane are concentric circles.

Similarly, while the right end ζr(b) for b ∈ [−τ1, 0] is sweeping out the
part of B1 by moving from ζr(−τ1) to ζr(0) = (τ2, f(τ2)), the left end ζl(b)
must move along the arc of a circle of radius f(0) joining B1 from the left at
ζl(0). If we denote the coordinates of ζl(−τ1) by (−u1, d1), we have (28) and
(29) for all x in the interval [−u1, τ2] strictly containing [−τ1, τ2]. This gives
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(28) and (29) for all x ∈ [−u1, τ2]. Considering two cases d2 = f(τ2) > 0 or
d2 = −f(τ2) < 0, we can repeat the argument above to obtain that ∂K ∩Π
and ∂L ∩Π are concentric discs. �

Lemma 8. Let K and L be two convex bodies in R3 satisfying the conditions
of Theorem 1. If L is a body of revolution, then K is also a body of revolution
with the same axis of rotation.

Proof. We assume that the x-axis is the axis of rotation of L. We will set
up a 3-dimensional sweeping procedure rotating the cones that are tangent
to ∂L with vertices on ∂K.

Let Wx be a plane parallel to the yz-plane and passing through (x, 0, 0),
x ∈ R, and let M(x) ⊂ Wx be a circle centered at (x, 0, 0). We will show
that for every x such that (x, y, z) ∈ intK, the generators of the sweeping
cones cut out the circles M(x) ⊂ ∂K, thus proving that K is a body of
revolution about the x-axis.

Let e′ = (x′, 0, 0), e′′ = (x′′, 0, 0), be two points of the intersection of the
x-axis with ∂K, x′ > 0, x′′ < 0. To set up the procedure, we will make
several auxiliary remarks and observations.

By the (d+ 1)-equatorial property of K and L, for every ray τ emanating
from e′ and tangent to ∂L we have

(30) |e′ − ∂L ∩ τ |d+1 + |∂L ∩ τ − ∂K ∩ τ |d+1 = 2σd+1.

Since |e′−∂L∩τ | is constant independent of τ , by (30) we see that the same
is true for |∂L∩ τ −∂K ∩ τ |. Therefore, for all rays τ emanating from e′ and
tangent to ∂L, all the chords K ∩ τ have the same length. Since L is the
body of revolution, for any rotation Φ = Φϕ by the angle ϕ ∈ (0, 2π) around
the x-axis, the points {∂L∩Φϕτ : ϕ ∈ [0, 2π]} form a circle centered on the
x-axis. By similarity of triangles, the ends {∂K ∩Φϕτ 6= e′ : ϕ ∈ [0, 2π]} of
the chords K ∩ Φϕτ form a circle Me′ = ∂K ∩ Ce′ centered on the x-axis,
where Ce′ is the cone tangent to ∂L with the vertex at e′ (see Figure 10).

Now we take any point e ∈Me′ ⊂ ∂K and repeat a similar argument for
the cone Ce tangent to ∂L with the vertex at e. Observe that for any ray
ν generating Ce, the ends {∂K ∩ Φϕν 6= Φϕe : ϕ ∈ [0, 2π]} of the chords
K ∩ Φϕν form a circle Me,ν(e′) ⊂ ∂K with the center on the x-axis and
which is parallel to Me′ (see Figure 10).

Indeed, let e ∈ Me′ and let ν be any ray generating Ce. By rotation
invariance of the length, |Φ(K∩ν)| = |K∩ν|, and by the rotation invariance
of L, |e − ∂L ∩ ν| = |Φ(e) − ∂L ∩ Φ(ν)|. Since (30) holds with e, ν, and
Φ(e),Φ(ν), instead of e′, τ , and since for ϕ ∈ [0, 2π] the points Φϕ(e) and
∂L ∩ Φϕ(ν), “move along” the circles centered on the x-axis, we see that
the ends {∂K ∩ Φϕν 6= Φϕe : ϕ ∈ [0, 2π]} of the chords K ∩ Φϕν form a
circle Me,ν(e′) parallel to Me′ and centered on the x-axis. This proves the
observation.

We can repeat the same argument with e′′ instead of e′.
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Figure 10. The sweeping cones in the 3-dimensional proce-
dure. On the left part we have Me′ is left to Me′′ and on the
right part Me′ is right to Me′′ .

Now we are ready to make the first step of our procedure. Let

x′1 = inf{x : M(x) = Me,ν(e′) with ν generating Ce, e ∈Me′},

x′′1 = sup{x : M(x) = Me,ν(e′′) with ν generating Ce, e ∈Me′′}.

Observe that x′1 < x′ and x′′ < x′′1.
We will consider two cases, Me′ is right to Me′′ and Me′ is left to Me′′

(see Figure 10). In both cases, by the above observations we have M(x) ⊂
∂K ∀x ∈ [x′1, x

′] ∪ [x′′, x′′1], i.e., the sets {(x, y, z) ∈ K : x ∈ [x′1, x
′]} and

{(x, y, z) ∈ K : ∪[x′′, x′′1]} are the bodies of revolution about the x-axis.
Let Me′ be right to Me′′ . We repeat the above argument for the generators

of the cone Ce, with e belonging to the circles M(x′1) and M(x′′1) . This gives
M(x) ⊂ ∂K ∀x ∈ [x′2, x

′
1] for some x′2 ∈ [x′′, x′1) (see the right part of Figure

11), and, similarly, M(x) ⊂ ∂K ∀x ∈ [x′′1, x
′′
2] for some x′′2 ∈ (x′′1, x

′], and etc.
We claim that after m ∈ N steps we have M(x) ⊂ ∂K ∀x ∈ [x′′, x′], i.e.,

K is a body of revolution. In fact, since the lengths of all chords tangent to
∂L and inscribed into ∂K exceed or equal to

2
1

d+1σ = min{x+ y : xd+1 + yd+1 = 2σd+1 and x ≥ 0, y ≥ 0},

we have x′j − x′j+1 ≥ 2
1

d+1σ cosα′j . Here by convexity α′j+1 < α′j <
π
2 for

j = 0, 1, . . . ,m, x′0 = x′, x′′0 = x′′ (see the right part of Figure 11). Similarly,

x′′j+1 − x′′j ≥ 2
1

d+1σ cosα′′j for the corresponding α′′j . Hence, for sufficiently
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Figure 11. Sections of the sweeping cones by the xz-plane
and the construction of x′1 and x′2.

large m we have
m∑
j=0

((x′j − x′j+1) + (x′′j − x′′j+1)) ≥
m∑
j=0

2
1

d+1σ(cosα′j + cosα′′j ) ≥ x′ − x′′,

and the claim is proved.
It remains to consider the case where Me′ is left to Me′′ . As above, we will

run the procedure that starts at e′ and follows the cones Ce with vertices e at
M(x′1), M(x′2), . . . , M(x′m). This time, however, each point x′j , j = 2, . . . ,

m, will be constructed slightly differently: for the cones C(x′1) = Ce(x
′
1),

tangent to ∂L with e ∈M(x′1), define

x∗1 = sup{x : (x, y, z) ∈ (Ce(x
′
1) ∩ ∂K) \M(x′1) for e ∈M(x′1)};

in its turn, for the cones C(x∗1) = Ce(x
∗
1), tangent to ∂L with e ∈ M(x∗1),

let

x′2 = inf{x : (x, y, z) ∈ (Ce(x
∗
1) ∩ ∂K) \M(x∗1) for e ∈M(x∗1)},

(see the left part of Figure 11). Observe that x′2 < x′1, and for all x ∈ [x′2, x
′
1]

we have M(x) ⊂ ∂K.
We can repeat the construction with the corresponding x∗j and x′j , j =

2, . . . ,m, to see that M(x) ⊂ ∂K for x ∈ [x′m, x
′]. Let r1 and r2 be such that

{x : (x, y, z) ∈ L} = [−r1, r2]. If 0 < inf
j≥2

x′j ≤ r2, we stop the procedure.

For, considering the cone Ce tangent to ∂L with e ∈M(inf
j≥2

x′j), we see that

the parts of K and L in {(x, y, z) ∈ R3 : x ≥ 0} are bodies of revolution.
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Assume now that inf
j≥2

x′j > r2, and let

γ = inf{x : M(y) ⊂ ∂K ∀ y ≥ x}, 0 ≤ γ ≤ inf
j≥2

x′j ,

(without loss of generality we can assume that γ > r2, otherwise we fin-
ish as above). If sup

j≥2
x∗j ≥ −r1, we stop. In this case, considering the

cone Ce tangent to ∂L with e ∈ M(sup
j≥2

x∗j ), we see that the part of K

in {(x, y, z) ∈ R3 : x ≥ 0} is a body of revolution. Finally, the case
sup
j≥2

x∗j < −r1 is impossible, for, we could continue the procedure, which

contradicts the definition of γ.
Thus, the parts of K and L in {(x, y, z) ∈ R3 : x ≥ 0} are bodies of rev-

olution. The analogous argument for {(x, y, z) ∈ R3 : x ≤ 0} corresponding
to e′′ follows similarly. �

4. Proof of Theorem 1

Let L be a body of revolution about the x1-axis and let W be any 3-
dimensional subspace containing the x1-axis. If d ≥ 4, we will consider
K ∩W , L ∩W , where without loss of generality we assume that W = {x ∈
Rd : x4 = · · · = xd = 0}.

By Lemma 8 we know that K ∩W and L ∩W are bodies of revolution
about the x1-axis. It follows that, by Lemmas 5 and 6, we have (28) and
(29). Hence, by Lemma 7, K ∩W and L ∩W are the concentric Euclidean
balls.

Let now Π be any 2-dimensional subspace of Rd, and let e1 be the first
coordinate vector. If e1 /∈ Π, let WΠ = span(Π, e1), and if e1 ∈ Π let WΠ

be any 3-dimensional subspace containing Π. In both cases, by the above,
K ∩WΠ and L ∩WΠ are the concentric Euclidean balls. Hence, K ∩Π and
L∩Π are the concentric discs. Since Π was chosen arbitrarily, the application
of [Ga, Corollary 7.1.4, page 272] finishes the proof of Theorem 1.
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Vlad Yaskin for their help and numerous very useful discussions. He is also
very indebted to the referees who found the gap in the original version of
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[Sa] L. A. Santaló, Two characteristic properties of circles on a spherical surface (Span-
ish), Math. Notae. 11 (1951), 73–78.

[Weg1] F. Wegner, Floating bodies of equilibrium, Stud. Appl. Math. 111 (2003), no. 2,
167–183.

[Weg2] F. Wegner, Floating bodies in equilibrium in 2D, the tire track problem and
electrons in a parabolic magnetic fields, arXiv:physics/0701241v3 (2007).

[YZ] V. Yaskin and N. Zhang, Non-central sections of convex bodies, Israel J. Math.
220 (2017), 763-790.

Department of Mathematics, Kent State University, Kent, OH 44242, USA
Email address: ryabogin@math.kent.edu


