Differential Geometry, Spring 2012.

Instructor: Dmitry Ryabogin

Assignment 10.

1. Problem 1.

Let $G = \{g_{ij}\}_{i,j=1,2}$ and $B = \{b_{ij}\}_{i,j=1,2}$ be the matrices of two quadratic forms G and B on the plane, where G is positive definite, and $g_{12} = g_{21}$, $b_{12} = b_{21}$. Consider a quadratic (in λ) equation det $(B - \lambda G) = 0$. The roots λ_1 and λ_2 of this equation are called the eigenvalues of the pair of quadratic forms G and B.

a) Show that if λ_1 and λ_2 are the eigenvalues of G and B, then two systems of two equations

$$\begin{cases} (b_{11} - \lambda_i g_{11})\xi_i^1 + (b_{12} - \lambda_i g_{12})\xi_i^2 = 0\\ (b_{12} - \lambda_i g_{12})\xi_i^1 + (b_{22} - \lambda_i g_{22})\xi_i^2 = 0, \end{cases}$$

i = 1, 2, with two unknowns $f_1 = (\xi_1^1, \xi_1^2)$ and $f_2 = (\xi_2^1, \xi_2^2)$ has a non-trivial solution.

The directions of the vectors f_1 and f_2 are called the *main directions* of the pair of quadratic forms; f_1 corresponds to λ_1 and f_2 corresponds to λ_2 .

In b) - e) you will show that If the eigenvalues of the pair of quadratic forms are different, then the main directions are orthogonal. In other words, you will prove that

$$\boldsymbol{f_1} \cdot \boldsymbol{f_2} = \sum_{i=1}^{2} \sum_{j=1}^{2} g_{ij} \xi_1^i \xi_2^j = 0, \qquad (1)$$

provided $\lambda_1 \neq \lambda_2$. Here $f_1 = \xi_1^1 e_1 + \xi_1^2 e_2$, $f_2 = \xi_2^1 e_1 + \xi_2^2 e_2$, and e_1 and e_2 are the basic vectors in the plane such that $e_i \cdot e_j = g_{ij}$, $1 \leq i, j \leq 2$.

b) Prove that there exists a basis d_1 , d_2 such that $d_i \cdot d_j = \delta_{ij}$, where $\delta_{ij} = 0$ if $i \neq j$ and $\delta_{ij} = 1$ if i = j.

c) Show that in the new basis d_1 , d_2 for the matrices $\overline{G} = I$ and \overline{B} (of G and B) one has $G = A^T \overline{G}A$ and $B = A^T \overline{B}A$, where $A = \{a_{ij}\}_{i,j=1,2}$ is such that $e_i = \sum_{j=1}^2 a_{ij}d_j$, i = 1, 2.

d) Use c) to show that

$$\det(B - \lambda G) = (\det A)^2 \det(\overline{B} - \lambda I), \qquad \det A \neq 0,$$

and deduce that the conditions

$$det(B - \lambda G) = 0 \qquad det(\overline{B} - \lambda I) = 0$$

are equivalent.

e) Prove that the quadratic form \overline{B} can be brought to a form corresponding to a diagonal matrix, say W. Prove that the eigenvectors of W are orthogonal in the usual Euclidean sense. Conclude that (1) holds.

2. **Problem 2.**

Let $S_p: T_p(S) \to T_p(S)$ be the shape operator defined by $S_p(\boldsymbol{v}) = -D_{\boldsymbol{v}}\boldsymbol{n}(p)$.

- a) Prove that S_p is *linear*.
- b) Show that the matrix representing S_p with respect to the basis $\{r_u, r_v\}$ is

$$II_{p}I_{p}^{-1} = \begin{pmatrix} L & M \\ M & N \end{pmatrix} \begin{pmatrix} E & F \\ F & G \end{pmatrix}^{-1}.$$

Hint: Write $S_p(\mathbf{r}_u) = a\mathbf{r}_u + b\mathbf{r}_v$ and $S_p(\mathbf{r}_v) = c\mathbf{r}_u + d\mathbf{r}_v$, and use the definition of L, M and N to get a system of linear equations for a, b, c and d.

c) Deduce that

$$K = \frac{LN - M^2}{EG - F^2}.$$

3. Problem 3.

Compute the second fundamental forms II_p of the following parametrized surfaces. Then calculate the matrix of the shape operator, determine H and K.

a) the cylinder

$$\boldsymbol{r}(u,v) = (a\cos u, a\sin u, v), \qquad a > 0$$

b) the torus

$$\boldsymbol{r}(u,v) = ((a+r\cos u)\cos v, (a+r\cos u)\sin v, r\sin u), \qquad 0 < r < a.$$

c) the helicoid

$$\boldsymbol{r}(u,v) = (u\cos v, u\sin v, bv), \qquad b > 0.$$

d) the catenoid

 $\boldsymbol{r}(u,v) = a(\cosh u \cos v, \cosh u \sin v, u).$