Differential Geometry, Spring 2012. Instructor: Dmitry Ryabogin

Assignment 11.

1. Problem 1.

a) Find the normal curvature of the paraboloid $z=\frac{1}{2}\left(a x^{2}+b y^{2}\right)$ at the point $(0,0)$ in the direction $(d x: d y)$.
b) Prove that for any parametrization of the plane the second quadratic form of the plane is zero; the second quadratic form of the sphere is proportional to the first one.
c) Find the asymptotic curves of the surface $z=\frac{x}{y}+\frac{y}{x}$.
d) Find the asymptotic curves of the catenoid

$$
\boldsymbol{r}(u, v)=(\cosh u \cos v, \cosh u \sin v, u) .
$$

e) Prove that on the helicoid

$$
\boldsymbol{r}(u, v)=(u \cos v, u \sin v, b v), \quad b>0,
$$

there are two families of the asymptotic curves: the straight lines and helixes.

2. Problem 2.

a) Find the main curvatures of the paraboloid $z=a\left(x^{2}+y^{2}\right)$ at the point $(0,0,0)$.
b) Find the lines of curvature on the helicoid and the paraboloid $z=a x y$.
c) Find the mean and the Gaussian curvature of the paraboloid $z=a x y$ at the point $x=y=0$.
d) Prove that the mean curvature of the helicoid is zero.
e) Prove that the mean curvature of the catenoid $z=a \operatorname{arcosh} \frac{\sqrt{x^{2}+y^{2}}}{a}$ is zero.

3. Problem 3.

Prove or give a counterexample:
a) If a curve is both asymptotic curve and a line of curvature, then it must be planar.
b) If a curve is planar and an asymptotic curve, then it must be a line.

4. Problem 4.

a) Show that at a hyperbolic point, the principal directions bisect the asymptotic directions
b) Show that if a surface is tangent to a plane along a curve, then the points of this curve are either parabolic or planar.

