Differential Geometry, Spring 2012.

 Instructor: Dmitry Ryabogin

 Instructor: Dmitry Ryabogin}

Assignment 2.

1. Problem 1.

a) Find the arc length of astroid $\quad x(t)=a \cos ^{3} t, y(t)=a \sin ^{3} t$.
b) Find the curvature of the curve

$$
x(t)=t-\sin t, \quad y(t)=1-\cos t, \quad z(t)=4 \sin \frac{t}{2} .
$$

c) Write the equation of the tangent line to the curve given by the equation

$$
x^{2}+y^{2}+z^{2}=1, \quad x^{2}+y^{2}=x
$$

at the point $(0,0,1)$.
d) Find the curvature of the line given implicitly by the equations

$$
x+\sinh x=\sin y+y, \quad z+e^{z}=x+\ln (1+x)+1
$$

at the point $(0,0,0)$
e) Find the curvature and the torsion of the curve

$$
x=a \cosh t, \quad y=a \sinh t, \quad z=a t .
$$

f) Find the equation of the parabola of the form $y=x^{2}+a x+b$ that is tangent to the circle $x^{2}+y^{2}=2$ at the point $(1,1)$.
2. Problem 2. One often gives a plane curve in polar coordinates by $\rho=\rho(\theta), \theta \in(a, b)$.
a) Show that the arc length is

$$
\int_{a}^{b} \sqrt{\rho^{2}+\left(\rho^{\prime}\right)^{2}} d \theta
$$

where the prime denotes the derivative relative to θ.
b) Show that the curvature is

$$
k(\theta)=\frac{2\left(\rho^{\prime}\right)^{2}-\rho \rho^{\prime \prime}+\rho^{2}}{\left(\left(\rho^{\prime}\right)^{2}+\rho^{2}\right)^{3 / 2}} .
$$

3. Problem 3.

Show that

$$
\boldsymbol{\alpha}(s)=\left(\frac{(1+s)^{3 / 2}}{3}, \frac{(1-s)^{3 / 2}}{3}, \frac{s}{\sqrt{2}}\right)
$$

is a unit speed curve and compute its Frenet-Serret apparatus.

4. Problem 4.

Assume that all normals of a regular curve pass through a fixed point. Prove that the trace of the curve is contained in a circle.
5. Problem 5^{*}. A unit speed curve $\boldsymbol{\alpha}(s)$ with $k \neq 0$ is a helix if and only if there is a constant c such that $\tau=c k$.

