Differential Geometry, Spring 2012.

Instructor: Dmitry Ryabogin

Assignment 3.

1. Problem 1.

Let $\boldsymbol{\alpha} \in \mathbb{R}^3$ be a trace of a regular smooth curve $\boldsymbol{\alpha}(t)$, and let P be a point on $\boldsymbol{\alpha}$. Assume that l is the line passing through P. If Q is another point on $\boldsymbol{\alpha}$, and h = dist(Q, l), d = dist(P, Q), the line l is called a *tangent line* provided $h/d \to 0$ as $Q \to P$. Prove that $\boldsymbol{\alpha}(t)$ has a unique tangent line, and the tangent at P corresponding to t has a direction of the vector $\boldsymbol{\alpha'}(t)$.

2. Problem 2.

a) For a *helix* $x = \cos t$, $y = \sin t$, z = t at the point (1, 0, 0) write the equations of the tangent line, osculating plane, normal plane, normal, binormal.

b) What is the angle between the curves $xy = c_1$ and $x^2 - y^2 = c_2$?

c) Prove that if the trace of the plane regular curve γ has the angle $\pi/2$ with the curves of the family $\varphi(x, y) = const$, $\varphi_x^2 + \varphi_y^2 \neq 0$, then $dx/\varphi_x = dy/\varphi_y$.

d) Find the equation of the circle tangent of the second order to the parabola $y = x^2$ at (0, 0).

3. Problem 3.

Write the equation of the osculating plane of the curve given by the equations

$$\varphi(x, y, z) = 0, \qquad \psi(x, y, z) = 0$$

at the point (x_o, y_o, z_o) .

4. Problem 4.

a) Prove that $k\tau = -\mathbf{T'} \cdot \mathbf{B'}$.

b) Prove that $[\alpha', \alpha'', \alpha'''] = k^2 \tau$, provided $\alpha(s)$ is a unit speed curve.

c) Let $\boldsymbol{\alpha}(t)$ be a regular curve. Suppose that there is a point $\boldsymbol{a} \in \mathbb{R}^3$ such that $\boldsymbol{\alpha}(t) - \boldsymbol{a}$ is orthogonal to $\boldsymbol{T}(t)$ for all t. Prove that $\boldsymbol{\alpha}(t)$ lies on the sphere.

d) Let $\alpha(t)$ be a regular curve and let \boldsymbol{a} be a point that belongs to each normal plane of $\boldsymbol{\alpha}$. Prove that $\boldsymbol{\alpha}$ is a sphere a curve.

5. Problem 5^* .

a) Prove that if all tangent lines of a given curve are parallel to a plane, then the curve is plane.

b) Prove that if all osculating planes of a given curve pass through a fixed point, then the curve is plane.