Differential Geometry, Spring 2012.
 Instructor: Dmitry Ryabogin

Assignment 3.

1. Problem 1.

Let $\boldsymbol{\alpha} \in \mathbb{R}^{3}$ be a trace of a regular smooth curve $\boldsymbol{\alpha}(t)$, and let P be a point on $\boldsymbol{\alpha}$. Assume that l is the line passing through P. If Q is another point on $\boldsymbol{\alpha}$, and $h=\operatorname{dist}(Q, l), d=\operatorname{dist}(P, Q)$, the line l is called a tangent line provided $h / d \rightarrow 0$ as $Q \rightarrow P$. Prove that $\boldsymbol{\alpha}(t)$ has a unique tangent line, and the tangent at P corresponding to t has a direction of the vector $\boldsymbol{\alpha}^{\prime}(t)$.

2. Problem 2.

a) For a helix $x=\cos t, y=\sin t, z=t$ at the point $(1,0,0)$ write the equations of the tangent line, osculating plane, normal plane, normal, binormal.
b) What is the angle between the curves $x y=c_{1}$ and $x^{2}-y^{2}=c_{2}$?
c) Prove that if the trace of the plane regular curve $\boldsymbol{\gamma}$ has the angle $\pi / 2$ with the curves of the family $\varphi(x, y)=$ const, $\varphi_{x}^{2}+\varphi_{y}^{2} \neq 0$, then $d x / \varphi_{x}=d y / \varphi_{y}$.
d) Find the equation of the circle tangent of the second order to the parabola $y=x^{2}$ at $(0,0)$.

3. Problem 3.

Write the equation of the osculating plane of the curve given by the equations

$$
\varphi(x, y, z)=0, \quad \psi(x, y, z)=0
$$

at the point $\left(x_{o}, y_{o}, z_{o}\right)$.
4. Problem 4.
a) Prove that $k \tau=-\boldsymbol{T}^{\prime} \cdot \boldsymbol{B}^{\prime}$.
b) Prove that $\left[\boldsymbol{\alpha}^{\prime}, \boldsymbol{\alpha}^{\prime \prime}, \boldsymbol{\alpha}^{\prime \prime \prime}\right]=k^{2} \tau$, provided $\boldsymbol{\alpha}(s)$ is a unit speed curve.
c) Let $\boldsymbol{\alpha}(t)$ be a regular curve. Suppose that there is a point $\boldsymbol{a} \in \mathbb{R}^{3}$ such that $\boldsymbol{\alpha}(t)-\boldsymbol{a}$ is orthogonal to $\boldsymbol{T}(t)$ for all t. Prove that $\boldsymbol{\alpha}(t)$ lies on the sphere.
d) Let $\boldsymbol{\alpha}(t)$ be a regular curve and let \boldsymbol{a} be a point that belongs to each normal plane of $\boldsymbol{\alpha}$. Prove that $\boldsymbol{\alpha}$ is a sphere a curve.
5. Problem 5*
a) Prove that if all tangent lines of a given curve are parallel to a plane, then the curve is plane.
b) Prove that if all osculating planes of a given curve pass through a fixed point, then the curve is plane.

