Differential Geometry, Spring 2012.
 Instructor: Dmitry Ryabogin
 Assignment 4.

1. Problem 1.

a) Show that

$$
\boldsymbol{\alpha}(s)=\frac{\left(\sqrt{1+s^{2}}, 2 s, \ln \left(s+\sqrt{1+s^{2}}\right)\right.}{\sqrt{5}}
$$

is a unit speed curve and compute its Frenet-Serret apparatus.
b) Let $\boldsymbol{\alpha}(s)$ be a unit speed curve with $k>0$ and $\tau>0$, and let $\boldsymbol{\beta}(s)=\int_{0}^{s} \boldsymbol{B}(\sigma) d \sigma$. Prove that $\boldsymbol{\beta}$ is unit speed and show that the Frenet-Serret apparatus $\{\bar{k}, \bar{\tau}, \overline{\boldsymbol{T}}, \overline{\boldsymbol{N}}, \overline{\boldsymbol{B}}\}$ of $\boldsymbol{\beta}$ satisfies $\bar{k}=\tau, \bar{\tau}=k, \overline{\boldsymbol{T}}=\boldsymbol{B}, \overline{\boldsymbol{N}}=-\boldsymbol{N}$, and $\overline{\boldsymbol{B}}=\boldsymbol{T}$.

2. Problem 2.

Let $\boldsymbol{\alpha}(s)$ be a unit speed curve with $k \neq 0$. Prove that the following are equivalent:
a) The image of $\boldsymbol{\alpha}$ lies in a plane (more simply, $\boldsymbol{\alpha}$ is a plane curve).
b) \boldsymbol{B} is a constant vector.
c) $\tau(s)=0$ for all s.

3. Problem 3.

a) Let $\boldsymbol{\alpha}(s)$ be a unit speed curve with $k \tau \neq 0$. Prove that the tangent to the tangent spherical image is parallel to the tangent to the binormal spherical image at corresponding points.
b) Prove that the normal spherical image of $\boldsymbol{\alpha}$ is never constant.

4. Problem 4.

$\boldsymbol{\alpha}(s)$ and $\boldsymbol{\beta}(s)$ are called Bertrand curves if for each s_{o}, the normal line to $\boldsymbol{\alpha}$ at $s=s_{o}$ is the same as the normal line to $\boldsymbol{\beta}(s)$ at $s=s_{o}$, (s need not be arc length on both $\boldsymbol{\alpha}$ and $\boldsymbol{\beta})$. We say that $\boldsymbol{\beta}$ is a Bertrand mate for $\boldsymbol{\alpha}$ if $\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$ are Bertrand curves.
a) Show that any two circles in the plane with the same center are Bertrand curves.
b) Let

$$
\boldsymbol{\alpha}(s)=\frac{1}{2}\left(\arccos s-s \sqrt{1-s^{2}}, 1-s^{2}, 0\right)
$$

and let

$$
\boldsymbol{\beta}(s)=\frac{1}{2}\left(\arccos s-s \sqrt{1-s^{2}}-s, 1-s^{2}+\sqrt{1-s^{2}}, 0\right)
$$

Show that $\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$ are Bertrand curves. Are they unit speed?
c) Prove that the distance between corresponding points of a pair of Betrand curves is constant.
d) Prove that the angle between the tangents to two Bertrand curves at corresponding points is constant.

