Differential Geometry, Spring 2012. Instructor: Dmitry Ryabogin

Assignment 4.

1. Problem 1.

a) Show that

$$\alpha(s) = \frac{(\sqrt{1+s^2}, 2s, \ln(s+\sqrt{1+s^2}))}{\sqrt{5}}$$

is a unit speed curve and compute its Frenet-Serret apparatus.

b) Let $\boldsymbol{\alpha}(s)$ be a unit speed curve with k > 0 and $\tau > 0$, and let $\boldsymbol{\beta}(s) = \int_0^s \boldsymbol{B}(\sigma) d\sigma$. Prove that $\boldsymbol{\beta}$ is unit speed and show that the Frenet-Serret apparatus $\{\bar{k}, \bar{\tau}, \bar{T}, \bar{N}, \bar{B}\}$ of $\boldsymbol{\beta}$ satisfies $\bar{k} = \tau, \bar{\tau} = k, \bar{T} = B, \bar{N} = -N$, and $\bar{B} = T$.

2. Problem 2.

Let $\alpha(s)$ be a unit speed curve with $k \neq 0$. Prove that the following are equivalent:

- a) The image of α lies in a plane (more simply, α is a plane curve).
- b) \boldsymbol{B} is a constant vector.

c) $\tau(s) = 0$ for all s.

3. Problem 3.

a) Let $\alpha(s)$ be a unit speed curve with $k\tau \neq 0$. Prove that the tangent to the tangent spherical image is parallel to the tangent to the binormal spherical image at corresponding points.

b) Prove that the normal spherical image of α is never constant.

4. Problem 4.

 $\alpha(s)$ and $\beta(s)$ are called *Bertrand curves* if for each s_o , the normal line to α at $s = s_o$ is the same as the normal line to $\beta(s)$ at $s = s_o$, (s need not be arc length on both α and β). We say that β is a *Bertrand mate* for α if α and β are Bertrand curves.

a) Show that any two circles in the plane with the same center are Bertrand curves.

b) Let

$$\boldsymbol{\alpha}(s) = \frac{1}{2}(\arccos s - s\sqrt{1-s^2}, 1-s^2, 0),$$

and let

$$\boldsymbol{\beta}(s) = \frac{1}{2}(\arccos s - s\sqrt{1-s^2} - s, 1-s^2 + \sqrt{1-s^2}, 0)$$

Show that α and β are Bertrand curves. Are they unit speed?

c) Prove that the distance between corresponding points of a pair of Betrand curves is constant.

d) Prove that the angle between the tangents to two Bertrand curves at corresponding points is constant.