Differential Geometry, Spring 2012.
 Instructor: Dmitry Ryabogin

Assignment 6.

1. Problem 1.

Let $g(s)$ be a smooth function on $(-1,1)$ and let c, d be constants. Define the curve

$$
\boldsymbol{\alpha}(t)=\left(c \int_{0}^{t} \sin g(s) d s, c \int_{0}^{t} \cos g(s) d s, d t\right)
$$

Prove that the ratio of the curvature and torsion of $\boldsymbol{\alpha}$ is constant.

2. Problem 2.

a) Let $\boldsymbol{\alpha}$ be an arclength-parametrized plane curve. We create a "parallel" curve $\boldsymbol{\beta}$ by taking $\boldsymbol{\beta}=\boldsymbol{\alpha}+\epsilon \boldsymbol{N}$ (for a fixed small positive value of ϵ). Explain the terminology and express the curvature of $\boldsymbol{\beta}$ in terms of ϵ and the curvature of $\boldsymbol{\alpha}$.
b) Now let $\boldsymbol{\alpha}$ be an arclength-parametrized space curve. Show that we can obtain a "parallel" curve $\boldsymbol{\beta}$ by taking $\boldsymbol{\beta}=\boldsymbol{\alpha}+\epsilon(\cos \theta \boldsymbol{N}+\sin \theta \boldsymbol{B})$ for an appropriate function θ. How many such parallel curves are there?
c) Sketch such a parallel curve for a circular helix $\boldsymbol{\alpha}$.

3. Problem 3.

a)* Suppose $\boldsymbol{\alpha}$ is arclength-parametrized and $k \tau \neq 0$. Show that $\boldsymbol{\alpha}$ has a Bertrand mate if and only if there are constants r and c so that $r k+c \tau=1$.
b) ${ }^{*}$ Given $\boldsymbol{\alpha}$, prove that if there is more than one curve $\boldsymbol{\beta}$ so that $\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$ are Bertrand mates, then there are infinitely many such curves and this occur if and only if $\boldsymbol{\alpha}$ is a circular helix.
c) Suppose that $\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$ are Bertrand mates. Prove that the torsion of $\boldsymbol{\alpha}$ and the torsion of $\boldsymbol{\beta}$ at corresponding points have constant product.

4. Problem 4.

A convex plane curve with origin in its interior can be determined by its tangent lines $x \cos \theta+y \sin \theta=h(\theta)$, called support lines. The function $h(\theta)$ is called the support function, (here θ is in the polar coordinate, and we assume $h(\theta)>0$ for all $\theta \in[0,2 \pi]$).
a) Compute $h(\theta)$ for an ellipse $\left\{(x, y): \frac{x^{2}}{16}+\frac{y^{2}}{9}=1\right\}$ and for the l^{p}-ball $\{(x, y)$: $\left.x^{p}+y^{p}=1\right\}, 1 \leq p \leq \infty$.
b) Prove that the length of $\boldsymbol{\alpha}$ is given by $L=\int_{0}^{2 \pi} h(\theta) d \theta$.
c) Prove that if C is a simple closed (convex) plane curve of constant breadth μ, then length $(C)=\pi \mu$.
d)* Prove that the line given above is tangent to the curve at the point

$$
\boldsymbol{\alpha}(\theta)=\left(h(\theta) \cos \theta-h^{\prime}(\theta) \sin \theta, h(\theta) \sin \theta+h^{\prime}(\theta) \cos \theta\right)
$$

e) ${ }^{*}$ Prove that the curvature of the curve at $\boldsymbol{\alpha}(\theta)$ is $1 /\left(h^{\prime}(\theta)+h^{\prime \prime}(\theta)\right)$.
f)* Prove that the area enclosed by $\boldsymbol{\alpha}$ is given by $A=\frac{1}{2} \int_{0}^{2 \pi}\left(h(\theta)^{2}-h^{\prime}(\theta)^{2}\right) d \theta$.
g) ${ }^{* *}$ Prove the isoperimetric inequality $L^{2} \geq 4 \pi A$.

