Differential Geometry, Spring 2012.

Instructor: Dmitry Ryabogin

Assignment 6.

1. Problem 1.

Let g(s) be a smooth function on (-1, 1) and let c, d be constants. Define the curve

$$\boldsymbol{\alpha}(t) = (c \int_{0}^{t} \sin g(s) ds, c \int_{0}^{t} \cos g(s) ds, dt).$$

Prove that the ratio of the curvature and torsion of α is constant.

2. Problem 2.

a) Let $\boldsymbol{\alpha}$ be an arclength-parametrized *plane* curve. We create a "parallel" curve $\boldsymbol{\beta}$ by taking $\boldsymbol{\beta} = \boldsymbol{\alpha} + \epsilon \boldsymbol{N}$ (for a fixed small positive value of ϵ). Explain the terminology and express the curvature of $\boldsymbol{\beta}$ in terms of ϵ and the curvature of $\boldsymbol{\alpha}$.

b) Now let $\boldsymbol{\alpha}$ be an arclength-parametrized *space* curve. Show that we can obtain a "parallel" curve $\boldsymbol{\beta}$ by taking $\boldsymbol{\beta} = \boldsymbol{\alpha} + \epsilon(\cos\theta N + \sin\theta B)$ for an appropriate function θ . How many such parallel curves are there?

c) Sketch such a parallel curve for a circular helix α .

3. Problem 3.

a)* Suppose α is arclength-parametrized and $k\tau \neq 0$. Show that α has a Bertrand mate if and only if there are constants r and c so that $rk + c\tau = 1$.

b)* Given α , prove that if there is more than one curve β so that α and β are Bertrand mates, then there are infinitely many such curves and this occur if and only if α is a circular helix.

c) Suppose that α and β are Bertrand mates. Prove that the torsion of α and the torsion of β at corresponding points have constant product.

4. Problem 4.

A convex plane curve with origin in its interior can be determined by its tangent lines $x \cos \theta + y \sin \theta = h(\theta)$, called *support lines*. The function $h(\theta)$ is called the support function, (here θ is in the polar coordinate, and we assume $h(\theta) > 0$ for all $\theta \in [0, 2\pi]$).

a) Compute $h(\theta)$ for an ellipse $\{(x, y) : \frac{x^2}{16} + \frac{y^2}{9} = 1\}$ and for the l^p -ball $\{(x, y) : x^p + y^p = 1\}, 1 \le p \le \infty$.

b) Prove that the length of $\boldsymbol{\alpha}$ is given by $L = \int_{0}^{2\pi} h(\theta) d\theta$.

c) Prove that if C is a simple closed (convex) plane curve of constant breadth μ , then $length(C) = \pi \mu$.

d)* Prove that the line given above is tangent to the curve at the point

$$\boldsymbol{\alpha}(\theta) = (h(\theta)\cos\theta - h'(\theta)\sin\theta, h(\theta)\sin\theta + h'(\theta)\cos\theta).$$

e)* Prove that the curvature of the curve at $\boldsymbol{\alpha}(\theta)$ is $1/(h'(\theta) + h''(\theta))$.

f)* Prove that the area enclosed by $\boldsymbol{\alpha}$ is given by $A = \frac{1}{2} \int_{0}^{2\pi} \left(h(\theta)^2 - h'(\theta)^2 \right) d\theta.$

g)** Prove the isoperimetric inequality $L^2 \ge 4\pi A$.