Differential Geometry, Spring 2012.

Instructor: Dmitry Ryabogin

Assignment 8.

1. Problem 1.

a) Consider a curve $\alpha(u) = (\rho(u), z(u))$ in the (ρ, z) plane, $\rho = \rho(u) > 0$. If this curve is rotated about the z-axis, we obtain a *surface of revolution*. We may parametrize this surface as follows

$$\boldsymbol{r}(u,v) = (\rho(u)\cos v, \rho(u)\sin v, z(u)), \qquad -\pi < v < \pi.$$

Prove that r is a *simple surface* if the original curve α was regular and one-to-one by computing r_u , r_v , and n.

b) Consider the Monge patch $\mathbf{r}(u, v) = (u, v, uv)$. Find the equation of the tangent plane at the point $\mathbf{r}(1, 2)$. Prove that this tangent plane intersects the surface in two lines:

 $\alpha(t) = \mathbf{r}(t, 2) = (t, 2, 2t)$ and $\beta(t) = \mathbf{r}(1, t) = (1, t, t).$

Hint: Prove that α and β do actually lie in the tangent plane.

c) Write out the parametrization $\boldsymbol{r}(u,v)$ of the *Möbius band*. Compute $\boldsymbol{n}(u,0)$ and show that

$$\lim_{u \to -\pi} \boldsymbol{n}(u,0) = -\lim_{u \to \pi} \boldsymbol{n}(u,0)$$

while

$$\lim_{u \to -\pi} \boldsymbol{r}(u,0) = \lim_{u \to \pi} \boldsymbol{r}(u,0).$$

2. **Problem 2.**

a) Let $S^2 = \{(u, v, w) \in \mathbb{R}^3 : u^2 + v^2 + w^2 = 1\}$ and $\mathbb{R}^2 = \{(u, v, w) \in \mathbb{R}^3 : w = 0\}$. If (u, v, 0) belongs to \mathbb{R}^2 , the line determined by (u, v, 0) and (0, 0, 1) intersects S^2 in a point other than (0, 0, 1). Denote this point by $\mathbf{r}(u, v)$. Compute the actual form of $\mathbf{r}(u, v)$ and show that $\mathbf{r} : \mathbb{R}^2 \to \mathbb{R}^3$ is a simple surface. The inverse mapping to \mathbf{r} is called the *stereographic projection*.

b) Let $\boldsymbol{\alpha}: (a, b) \to \mathbb{R}^3$ be a unit speed curve with $k \neq 0$ and let

$$\mathcal{U} = \{ (u, v) \in \mathbb{R}^2 : a < u < b, \ v \neq 0 \}$$

Define $\mathbf{r} : \mathcal{U} \to \mathbb{R}^3$ by $\mathbf{r}(u, v) = \mathbf{\alpha}(u) + v\mathbf{\alpha}'(u)$. Prove that \mathbf{r} is a simple surface, provided \mathbf{r} one-to-one. It is called the *tangent developable surface* of $\mathbf{\alpha}$.

c) Let

$$\mathbf{r}(u,v) = (\sin u \cos v, 2\sin u \sin v, 3\cos u), \qquad -1 < u < 1, \ 0 < v < \pi.$$

Show that \boldsymbol{r} is a simple surface. What is it?

3. Problem 3.

Let P be a convex polygon in \mathbb{R}^2 with faces (that are actually edges) F_j of length $c_j = l(F_j)$ and unit normals (to faces) n_j .

a) Prove that $\sum_{j} c_{j} \boldsymbol{n}_{j} = \boldsymbol{0}.$

b) Let $(\xi, \eta) \in \mathbb{R}^2$ be such that $\xi^2 + \eta^2 = 1$. Prove the Cauchy projection formula

$$length(P|(\xi,\eta)^{\perp}) = \frac{1}{2} \sum_{j} c_{j} |(\xi,\eta) \cdot \boldsymbol{n}_{j}|,$$

where $P|(\xi,\eta)^{\perp}$ is the *projection* of P onto the line

$$(\xi,\eta)^{\perp} = \{(x,y) \in \mathbb{R}^2 : (x,y) \cdot (\xi,\eta) = 0\},\$$

i.e.,

 $P|(\xi,\eta)^{\perp} = \{(x,y) \in \xi^{\perp} : (x,y) + \lambda(\xi,\eta) \in P \text{ for some } \lambda \in \mathbb{R}\}.$

c)* Let $c_j > 0$ and let n_j be unit vectors in \mathbb{R}^2 , $j = 1, 2, ..., m, m \ge 3$, such that the condition in a) is true. Does there exist a convex polygon P such that c_j are lengths of its faces F_j and n_j are their normals?