Differential Geometry, Spring 2012. Instructor: Dmitry Ryabogin

 Assignment 9.

 Assignment 9.}

1. Problem 1.

a) Determine the tangent planes of $x^{2}+y^{2}-z^{2}=1$ at the points $(x, y, 0)$ and show that they are all parallel to the z axis.
b) * Show that the equation of the tangent plane at $\left(x_{o}, y_{o}, z_{o}\right)$ of a regular surface given by $f(x, y, z)=0$, where 0 is a regular value of f, is

$$
f_{x}\left(x_{o}, y_{o}, z_{o}\right)\left(x-x_{o}\right)+f_{y}\left(x_{o}, y_{o}, z_{o}\right)\left(y-y_{o}\right)+f_{z}\left(x_{o}, y_{o}, z_{o}\right)\left(z-z_{o}\right)=0 .
$$

c) Show that the equation of the tangent plane of a surface which is the graph of a differentiable function $z=f(x, y)$, at the point $p_{o}=\left(x_{o}, y_{o}\right)$, is given by

$$
z=f\left(x_{o}, y_{o}\right)+f_{x}\left(x_{o}, y_{o}\right)\left(x-x_{o}\right)+f_{y}\left(x_{o}, y_{o}\right)\left(y-y_{o}\right) .
$$

Recall the definition of the differential $d f$ of a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ and show that the tangent plane is the graph of the differential.

2. Problem 2.

If a coordinate neighborhood of a regular surface can be parametrized in the form

$$
\boldsymbol{r}(u, v)=\boldsymbol{\alpha}(u)+\boldsymbol{\beta}(v)
$$

where $\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$ are regular parametrized curves, show that the tangent planes along a fixed coordinate curve of this neighborhood are all parallel to a line.

3. Problem 3.

Compute the first fundamental forms of the following parametrized surfaces where they are regular:
a) ellipsoid

$$
\boldsymbol{r}(u, v)=(a \sin u \cos v, b \sin u \sin v, c \cos u) .
$$

b) elliptic paraboloid

$$
\boldsymbol{r}(u, v)=\left(a u \cos v, b u \sin v, u^{2}\right)
$$

c) hyperbolic paraboloid

$$
\boldsymbol{r}(u, v)=\left(a u \cosh v, b u \sinh v, u^{2}\right) .
$$

d) hyperboloid of two sheets

$$
\boldsymbol{r}(u, v)=(a \sinh u \cos v, b \sinh u \sin v, c \cosh u) .
$$

4. Problem 4.

a) Given the parametrized surface

$$
\boldsymbol{r}(u, v)=(u \cos v, u \sin v, \log \cos v+u), \quad \frac{\pi}{2}<v<\frac{\pi}{2},
$$

show that the two curves $\boldsymbol{r}\left(u_{1}, v\right), \boldsymbol{r}\left(u_{2}, v\right)$ determine segments of equal lengths on all curves $\boldsymbol{r}(u$, const $)$.
b) Show that

$$
\boldsymbol{r}(u, v)=(u \sin \gamma \cos v, u \sin \gamma \sin v, u \cos \gamma), \quad 0<u<\infty, 0<v<2 \pi, \gamma=\text { const. },
$$

is a parametrization of the cone with 2γ as the angle of the vertex. In the corresponding coordinate neighborhood, prove that the curve

$$
\boldsymbol{r}(c \exp (v \sin \gamma \operatorname{cotan} \delta), v), \quad c=\text { const }, \delta=\text { const. }
$$

intersects the generators of the cone ($v=$ const) under the constant angle γ.

