On a functional equation related to convex bodies with $S U$ (2)-congruent projections

Dmitry Ryabogin ${ }^{1}{ }^{(1)}$

Received: 19 September 2016 / Accepted: 15 March 2017
© Springer Science+Business Media Dordrecht 2017

Abstract

Let K and L be two convex bodies in \mathbb{R}^{5}. Assume that their orthogonal projections $K \mid H$ and $L \mid H$ onto every 4 -dimensional subspace H are directly $S U(2)$-congruent, i.e., they coincide up to a $S U(2)$-rotation for some complex structure in H and a translation in H. We prove that the bodies coincide up to a translation and a reflection in the origin, provided that the set of diameters of one of the bodies is contained in a finite union of two-dimensional subspaces of \mathbb{R}^{5}. We obtain this result as a consequence of a more general statement about a functional equation on the unit sphere.

Keywords Projections of convex bodies • Spherical Funk Transform • Bodies with directly congruent projections

1 Introduction

In this paper we address the following problem (cf., for example, [2, Problem 3.2, p. 125]).
Problem 1 Let $2 \leq k \leq d-1$. Assume that K and L are convex bodies in \mathbb{R}^{d} such that the projections $K \mid H$ and $L \mid H$ are congruent for all $H \in \mathcal{G}(d, k)$. Is K a translate of $\pm L$?

Here we say that $K \mid H$, the projection of K onto H, is congruent to $L \mid H$ if there exists an orthogonal transformation $\varphi \in O(k, H)$ in H such that $\varphi(K \mid H)$ is a translate of $L \mid H$; $\mathcal{G}(d, k)$ stands for the Grassmann manifold of all k-dimensional subspaces in \mathbb{R}^{d}.

Recently, Myroshnychenko [6] together with the author gave an affirmative answer to Problem 1 in the class of polytopes. We refer the reader to $[1,3,5,7]$ and [8], for the history and some partial results related to Problem 1.

Our first result is

[^0]Theorem 1 Let K and L be two convex bodies in \mathbb{R}^{5}. Assume that for every $\xi \in S^{4}$ the projections $K \mid \xi^{\perp}$ and $L \mid \xi^{\perp}$ are directly $S U(2)$-congruent, i.e., for every $\xi \in S^{4}$ there is a rotation $\varphi_{\xi} \in S U\left(2, \xi^{\perp}\right)$ for some complex structure in ξ^{\perp} and a vector $a_{\xi} \in \xi^{\perp}$ such that

$$
\begin{equation*}
\varphi_{\xi}\left(K \mid \xi^{\perp}\right)+a_{\xi}=L \mid \xi^{\perp} . \tag{1}
\end{equation*}
$$

Then $K+b=L$ or $-K+b=L$ for some $b \in \mathbb{R}^{5}$, provided that the set of diameters of one of the bodies is contained in a finite union of two-dimensional subspaces of \mathbb{R}^{5}.

We obtain Theorem 1 as a consequence of a more general statement about a functional equation on the unit sphere. Let

$$
\begin{equation*}
M\left(g_{e}\right)=\left\{x \in S^{4}: g_{e}(x)=\max _{S^{4}} g_{e}\right\} \tag{2}
\end{equation*}
$$

be the set of directions of the maxima of the even part of a continuous function g defined on S^{4}. We have

Theorem 2 Let f and g be two continuous functions on S^{4}. Assume that for every $\xi \in S^{4}$ there is a rotation $\varphi_{\xi} \in S U\left(2, \xi^{\perp}\right)$ for some complex structure in ξ^{\perp} and a vector $a_{\xi} \in \xi^{\perp}$ such that

$$
\begin{equation*}
f\left(\varphi_{\xi}(x)\right)+a_{\xi} \cdot x=g(x) \quad \forall x \in S^{4} \cap \xi^{\perp} . \tag{3}
\end{equation*}
$$

Then there exists $b \in \mathbb{R}^{5}$ such that $f(x)+b \cdot x=g(x)$ for all $x \in S^{4}$ or $f(-x)+b \cdot x=g(x)$ for all $x \in S^{4}$, provided that $M\left(g_{e}\right)$ is contained in a finite union of large 1-dimensional circles of S^{4}.

The paper is organized as follows. In the next section we recall some definitions and prove several auxiliary Lemmata that will be used later. We prove Theorems 2 and 1 in Sects. 3 and 4.

1.1 Notation

We denote by $S^{4}=\left\{x \in \mathbb{R}^{5}:|x|=1\right\}$ the set of all unit vectors in the Euclidean space \mathbb{R}^{5}. For any unit vector $\xi \in S^{4}$ we let ξ^{\perp} to be the orthogonal complement of ξ in \mathbb{R}^{5}, i.e., the set of all $x \in \mathbb{R}^{5}$ such that $x \cdot \xi=0$; here $x \cdot \xi$ stands for a usual scalar product of x and ξ in \mathbb{R}^{5}. The notation for the orthogonal group $O(k)$ and the special orthogonal group $S O(k), k \geq 2$, is standard; $\operatorname{span}\left(a_{1}, a_{2}, \ldots, a_{m}\right)$ stands for a m-dimensional subspace that is a linear span of linearly independent vectors $a_{1}, \ldots, a_{m}, m \geq 1$. We will write f_{e} and f_{o} for the even and odd parts of the function f,

$$
f_{e}(x)=\frac{f(x)+f(-x)}{2}, \quad f_{o}(x)=\frac{f(x)-f(-x)}{2}, \quad x \in \mathbb{R}^{5} .
$$

2 Auxiliary definitions and results

We introduce a complex structure in \mathbb{R}^{4} by identifying it with \mathbb{C}^{2}. We will say that two bodies A and B in $\mathbb{R}^{4}=\mathbb{C}^{2}$ are directly $S U(2)$-congruent if there exists a vector $a \in \mathbb{R}^{4}$ and a $S U(2)$-rotation $\varphi_{\mathbb{R}^{4}}$ such that $\varphi(A)+a=B$.

Consider any 4-dimensional subspace ξ^{\perp} of \mathbb{R}^{5} orthogonal to $\xi \in S^{4}$. We say that $\varphi_{\xi} \in$ $S O\left(4, \xi^{\perp}\right)$, meaning that there exists a choice of an orthonormal basis in \mathbb{R}^{5} and a rotation $\Phi \in S O(5)$, with a matrix written in this basis, such that the action of Φ on ξ^{\perp} is the rotation φ_{ξ} in ξ^{\perp}, and the action of Φ on $l(\xi)=\left(\xi^{\perp}\right)^{\perp}$ is trivial, i.e., $\Phi(y)=y$ for every $y \in l(\xi)$.

We say that a rotation φ_{ξ} is in $S U\left(2, \xi^{\perp}\right)$ if its matrix A_{ξ} with respect to a certain basis in $\xi^{\perp "}={ }^{\prime \prime} \mathbb{R}^{4 "}=" \mathbb{C}^{2}$ is of the form (see [9], page 130):

$$
A_{\xi}=\left[\begin{array}{cc}
e^{i \varphi} & 0 \\
0 & e^{-i \varphi}
\end{array}\right], \quad \varphi \in[-\pi, \pi] .
$$

Here the invariant subspaces of φ_{ξ} (for $\varphi \neq 0, \pi$) are the orthogonal complex lines (twodimensional real subspaces of $\left.\xi^{\perp}\right) l_{1}=l_{1}(\xi)$ and $l_{2}=l_{2}(\xi)$; the restriction $\left.\varphi \xi\right|_{l_{1}}$ is equivalent to a multiplication by $e^{i \varphi}$, and the restriction $\left.\varphi_{\xi}\right|_{l_{2}}$ is equivalent to a multiplication by $e^{-i \varphi}$.

We identify $S U\left(2, \xi^{\perp}\right)$ with a subgroup of $S O\left(4, \xi^{\perp}\right)$ of the so-called isoclinic rotations, [11].

Lemma 1 If f and g verify the conditions of Theorem 2, then $f_{e}=g_{e}$ on S^{4}.
Proof Comparing the even parts of Eq. (3) we have

$$
f_{e}\left(\varphi_{\xi}(u)\right)=g_{e}(u) \text { for any } \xi \in S^{4} \quad \text { and any } \quad u \in S^{4} \cap \xi^{\perp} .
$$

Integrating over $S^{4} \cap \xi^{\perp}$ and using the invariance of the Lebesgue measure under rotations, we obtain

$$
\int_{S^{4} \cap \xi^{\perp}} f_{e}\left(\varphi_{\xi}(u)\right) d \sigma(u)=\int_{S^{4} \cap \xi^{\perp}} f_{e}(u) d \sigma(u)=\int_{S^{4} \cap \xi^{\perp}} g_{e}(u) d \sigma(u) .
$$

In other words, $F f_{e}=F g_{e}$ on S^{4}, where

$$
F f_{e}(\xi)=\int_{S^{4} \cap \xi^{\perp}} f_{e}(u) d \sigma(u), \quad \xi \in S^{4}
$$

is the Funk transform on S^{4}. Since it is injective on even functions (see [4], Corollary 2.7, p. 128), we obtain the desired result.

From now on in this section we will assume that the functions are odd.
Lemma 2 (cf. Lemma 1 [7]). Let $z \in S^{4}$ and let $S^{4} \cap z^{\perp}=\Lambda_{0} \cup \Lambda_{\pi}$, where

$$
\begin{aligned}
& \Lambda_{0}=\left\{\xi \in S^{4} \cap z^{\perp}: f_{o}(x)=g_{o}(x) \quad \forall x \in S^{4} \cap \xi^{\perp}\right\}, \\
& \Lambda_{\pi}=\left\{\xi \in S^{4} \cap z^{\perp}:-f_{o}(x)=g_{o}(x) \quad \forall x \in S^{4} \cap \xi^{\perp}\right\} .
\end{aligned}
$$

Then $f_{o}=g_{o}$ on S^{4} or $f_{o}=-g_{o}$ on S^{4}.
Proof Observe that

$$
\begin{equation*}
\forall x \in S^{4}, \quad S^{4}=\bigcup_{\left\{\xi \in S^{4} \cap z^{\perp} \cap x^{\perp}\right\}}\left(S^{4} \cap \xi^{\perp}\right) . \tag{4}
\end{equation*}
$$

Indeed, for any $y \in S^{4}$ we take $\xi \in S^{4} \cap z^{\perp} \cap x^{\perp} \cap y^{\perp}$ to obtain that $y \in S^{4} \cap \xi^{\perp}$.
Assume that there exists $x \in S^{4}$ such that ($\left.S^{4} \cap z^{\perp} \cap x^{\perp}\right) \subset \Lambda_{0}$, then, using (4), we see that $f_{o}=g_{o}$ on S^{4}. Similarly, if there exists $x \in S^{4}$ such that $\left(S^{4} \cap z^{\perp} \cap x^{\perp}\right) \subset \Lambda_{\pi}$, then, $f_{o}=-g_{o}$ on S^{4}.

On the other hand, if for any $x \in S^{4}$ there exists two directions ξ_{1} and $\xi_{2} \in S^{4} \cap z^{\perp} \cap x^{\perp}$, $\xi_{1} \neq \pm \xi_{2}$, such that $\xi_{1} \in \Lambda_{0}$ and $\xi_{2} \in \Lambda_{\pi}$, then $f_{o}(x)=g_{o}(x)=-f_{o}(x)=0$. Hence, $f_{o}=g_{o}=0$ on S^{4}.

Let $z \in S^{4}$. Define

$$
\Xi_{0}=\left\{\xi \in S^{4} \cap z^{\perp}: f_{o}(x)+a_{\xi} \cdot x=g_{o}(x) \quad \forall x \in S^{4} \cap \xi^{\perp}\right\},
$$

and

$$
\Xi_{\pi}=\left\{\xi \in S^{4} \cap z^{\perp}:-f_{o}(x)+a_{\xi} \cdot x=g_{o}(x) \quad \forall x \in S^{4} \cap \xi^{\perp}\right\} .
$$

Theorem 3 (cf. Theorem 1.3 [5]). Let f and g be two odd continuous functions on S^{4} and let $z \in S^{4}$. Assume that $S^{4} \cap z^{\perp}=\Xi_{0} \cup \Xi_{\pi}$. Then there exists $b \in \mathbb{R}^{5}$ such that for all $u \in S^{4}$ we have $g_{o}(u)=f_{o}(u)+b \cdot u$, or for all $u \in S^{4}$ we have $g_{o}(u)=-f_{o}(u)+b \cdot u$.

Proof Since the proof is very similar to the one of Theorem 1.3, [5], we sketch it briefly. Take $n=5$ in Theorem 1.3 and Lemma 4.3 [5]. Repeating the argument, we obtain $S^{4} \cap z^{\perp}=$ $\Lambda_{0} \cup \Lambda_{\pi}$ (except an obvious difference with the definitions of Ξ_{0} and Ξ_{π} in this note and in [5], Lemmata 3.7 and 3.8 follow without any changes). It remains to apply the previous lemma with the sets Λ_{0} and Λ_{π} that are defined analogously to those in Lemma 4.2, [5], and with the functions \tilde{f}_{o} and \tilde{g}_{o} that appear in the proof of Lemma 4.3 [5].

3 Proof of Theorem 2

Assume at first that the set of maxima of g_{e} consists of two opposite points, i.e.,

$$
\begin{equation*}
M\left(g_{e}\right)=\left\{x \in S^{4}: g_{e}(x)=\max _{S^{4}} g_{e}\right\}=\{ \pm z\} \tag{5}
\end{equation*}
$$

for some $z \in S^{4}$. Consider any $\xi \in S^{4} \cap z^{\perp}$. We claim that

$$
\begin{equation*}
M_{\xi}\left(f_{e}\right)=\left\{x \in S^{4} \cap \xi^{\perp}: f_{e}(x)=M\left(f_{e}\right)\right\}=\{ \pm z\} \tag{6}
\end{equation*}
$$

To show (6), observe at first that

$$
\begin{equation*}
\max _{S^{4} \cap \xi^{\perp}} f_{e}=g_{e}(z) . \tag{7}
\end{equation*}
$$

Indeed, let $y \in S^{4} \cap \xi^{\perp}$ be such that $f_{e}(y)=\max _{S^{4} \cap \xi^{\perp}} f_{e}>g_{e}(z)$. Since the identity

$$
\begin{equation*}
f_{e}\left(\varphi_{\xi}(x)\right)=g_{e}(x) \quad \forall x \in S^{4} \cap \xi^{\perp} \tag{8}
\end{equation*}
$$

obtained by taking even parts of (3), is equivalent to

$$
\begin{equation*}
f_{e}(y)=g_{e}\left(\varphi_{\xi}^{-1}(y)\right) \quad \forall y \in S^{4} \cap \xi^{\perp} \tag{9}
\end{equation*}
$$

we see that (9) does not hold, for, $f_{e}(y)>g_{e}(z) \geq g_{e}\left(\varphi_{\xi}^{-1}(y)\right)$. Hence, $\max _{S^{4} \cap \xi^{\perp}} f_{e} \leq g_{e}(z)$. Since $f_{e}\left(\varphi_{\xi}^{-1}(z)\right)=g_{e}(z)$, a similar argument shows that $\max _{S^{4} \cap \xi \perp} f_{e}$ may not be smaller than $g_{e}(z)$. We have proved (7).

Next, we observe that for each $\xi \in S^{3} \cap z^{\perp}$, the set $M_{\xi}\left(f_{e}\right)$ consists of two opposite points on S^{4}. Indeed, if the maximum were reached at two points $y_{1}, y_{2} \in S^{4} \cap \xi^{\perp}, y_{1} \neq \pm y_{2}$, then, using (9), we see that g_{e} would reach the maximum at two different points $\varphi_{\xi}^{-1}\left(y_{1}\right)$ and $\varphi_{\xi}^{-1}\left(y_{2}\right) \neq \pm \varphi_{\xi}^{-1}\left(y_{1}\right)$. This contradicts (5).

Now we show (6). If it is $\{ \pm y\}$ for some $y \neq z, y \in S^{4} \cap \xi^{\perp}$, we take $\zeta \in\left(S^{3} \cap z^{\perp}\right) \backslash$ ($S^{3} \cap y^{\perp}$). Since $y \notin S^{4} \cap \zeta^{\perp}$, Eq. (8) may not hold with $\xi=\zeta$. Thus, (6) holds, and we obtain $M\left(f_{e}\right)=M\left(g_{e}\right)=\{ \pm z\}$.

Using the previous identity and (8), we see that $\varphi_{\xi}(z)= \pm z$ for all $\xi \in S^{4} \cap z^{\perp}$. For, $\varphi_{\xi}(z)$ must be a point where the maximum of f_{e} is reached. Hence, we can assume that for every $\xi \in S^{3} \cap z^{\perp}$ the angle of rotation of $\varphi_{\xi} \in S U\left(2, \xi^{\perp}\right)$ is zero or π (since the rotations φ_{ξ} are all isoclinic [11], any ray r in ξ^{\perp} emanating from the origin is not parallel to $\varphi_{\xi}(r)$, unless the angle of rotation is zero or π).

Thus, we can assume that for all $\xi \in S^{4} \cap z^{\perp}$, there exists $a_{\xi} \in \xi^{\perp}$ such that

$$
\begin{equation*}
f(x)+a_{\xi} \cdot x=g(x) \quad \forall x \in S^{4} \cap \xi^{\perp} \tag{10}
\end{equation*}
$$

or

$$
\begin{equation*}
f(-x)+a_{\xi} \cdot x=g(x) \quad \forall x \in S^{4} \cap \xi^{\perp} . \tag{11}
\end{equation*}
$$

The proof of Theorem 2 in the case when $M\left(g_{e}\right)$ consists of a pair of opposite points on S^{4} now follows from Lemma 1 and Theorem 3.

Consider the general case. Assume that $M\left(g_{e}\right)$ is a subset A of finitely many onedimensional large circles of $S^{4}, A \subset \bigcup_{j=1}^{k} \mathbb{S}_{j}, \mathbb{S}_{j}=S^{4} \cap \Pi_{j}$, where Π_{j} is a two-dimensional subspace of \mathbb{R}^{5}.

Let $z \in A$ and let $\xi \in S^{4} \cap z^{\perp}$. Then, $\xi^{\perp} \supset \Pi_{j}$ if and only if $\xi \in \Pi_{j}^{\perp}, j=1, \ldots, k$. Consider

$$
G_{z}=\left(S^{4} \cap z^{\perp}\right) \backslash\left(\bigcup_{j=1}^{k}\left(S^{4} \cap \Pi_{j}^{\perp}\right)\right.
$$

For every $\xi \in G_{z}$, the subspace ξ^{\perp} does not contain any Π_{j}, and we have $\xi^{\perp} \cap A=\{ \pm z\}$. Then, for any $\xi \in G_{z}, M_{\xi}\left(g_{e}\right)=\{ \pm z\}$. Repeating the argument of the first part of the proof, we obtain (10), (11) for any $\xi \in G_{z}$. Since G_{z} is dense in $S^{4} \cap z^{\perp}$, we have (10) and (11) for any $\xi \in S^{4} \cap z^{\perp}$ (for any $\xi \in S^{4} \cap z^{\perp}$ it is enough to consider a sequence of subspaces $\left\{\xi_{k}^{\perp}\right\}_{k=1}^{\infty}, \xi_{k} \in G_{z}, \xi_{k} \rightarrow \xi$ as $k \rightarrow \infty$, for which (10) or (11) holds in the corresponding ξ_{k}^{\perp}, and pass to the limit as $k \rightarrow \infty$; one can use a converging subsequence of $\left\{a_{\xi_{k}}\right\}_{k=1}^{\infty}$ if necessary). It remains to apply Lemma 1 and Theorem 3.

The proof of Theorem 2 is complete.

4 Proof of Theorem 1

We denote by $h_{K}(x)$ the support function of a convex body $K \subset \mathbb{R}^{n}$. For $x \in \mathbb{R}^{n}$ it is defined as $h_{K}(x)=\sup _{y \in K} x \cdot y$, ([10], page 37), and it is a homogeneous function of degree 1 . The width of a set $A \subset \mathbb{R}^{n}$ in the direction $x \in \mathbb{R}^{n}$, is defined as $\omega_{A}(x)=h_{A}(x)+h_{A}(-x)$. A segment $[z, y] \subset K$ is called a diameter of the convex body K if $|z-y|=\max _{\left\{\theta \in S^{n-1}\right\}} \omega_{K}(\theta)$. We also define $M\left(\left.\omega_{L}\right|_{S^{4}}\right)$ as in (2).

We will use the following well-known properties of the support function. For every convex body K,

$$
\begin{equation*}
h_{K \mid \xi^{\perp}}(x)=h_{K}(x) \text { and } h_{\varphi_{\xi}\left(K \mid \xi^{\perp}\right)}(x)=h_{K \mid \xi^{\perp}}\left(\varphi_{\xi}^{-1}(x)\right), \quad \forall x \in \xi^{\perp}, \tag{12}
\end{equation*}
$$

(see, for example [2, (0.21), (0.26), pages 17-18]); here φ_{ξ}^{-1} stands for the inverse of $\varphi_{\xi} \in S O\left(4, \xi^{\perp}\right)$.

Theorem 1 can be reformulated in terms of support functions as follows.

Theorem 4 Let K and L be two convex bodies in \mathbb{R}^{5}. Assume that for every $\xi \in S^{4}$ there is a rotation $\varphi_{\xi} \in S U\left(2, \xi^{\perp}\right)$ for some complex structure in ξ^{\perp} and a vector $a_{\xi} \in \xi^{\perp}$ such that

$$
\begin{equation*}
h_{K \mid \xi^{\perp}}\left(\varphi_{\xi}^{-1}(x)\right)+a_{\xi} \cdot x=h_{L \mid \xi^{\perp}}(x) \quad \forall x \in \xi^{\perp} . \tag{13}
\end{equation*}
$$

Assume also that $M\left(\left.\omega_{L}\right|_{S^{4}}\right)$ is contained in finitely many 1-dimensional great circles of S^{4}. Then there exists $b \in \mathbb{R}^{5}$ such that $h_{K}(x)+b \cdot x=h_{L}(x)$ for all $x \in \mathbb{R}^{5}$, or $h_{K}(x)+b \cdot x=$ $h_{L}(-x)$ for all $x \in \mathbb{R}^{5}$.

The proof of Theorems 4 and 1 now follows directly from Theorem 3, provided we take $f=h_{K}$ and $g=h_{L}$.

References

1. Alfonseca, M., Cordier, M., Ryabogin, D.: On bodies with directly congruent projections and sections. Israel J. Math. 215, 765-799 (2016)
2. Gardner, R.J.: Geometric Tomography, Second edition. Encyclopedia of Mathematics and Its Applications, vol. 58. Cambridge University Press, Cambridge (2006)
3. Golubyatnikov, V.P.: Uniqueness Questions in Reconstruction of Multidimensional Objects from Tomography Type Projection Data, Inverse and Ill-Posed Problems Series. Utrecht, Boston (2000)
4. Helgason, S.: The Radon Transform. Birkhäuser, Stuttgart (1980)
5. Myroshnychenko, S.: On a functional equation related to a pair of hedgehogs with congruent projections. A special issue of JMAA dedicated to Richard Aron, 445 (2017), Issue 2, pp. 1492-1504 (see also http:// www.sciencedirect.com/science/journal/0022247X)
6. Myroshnychenko, S., Ryabogin, D.: On polytopes with congruent projections or sections. Adv. Math. (accepted)
7. Ryabogin, D.: On the continual Rubik's cube. Adv. Math. 231, 3429-3444 (2012)
8. Ryabogin, D.: On symmetries of projections and sections of convex bodies, Discrete Geometry and Symmetry. In: Marston, D.E., Conder, A.D. and Weiss, A.I. (eds.) Honor of Károly Bezdek's and Egon Schulte's 60th Birthdays. Springer Proceedings in Mathematics and Statistics, 2017 (to appear)
9. Saveliev, N.: Lectures on Topology of 3-Manifolds: An Introduction to the Gasson Invariant. de Gruyter textbook, New York (1999)
10. Schneider, R.: Convex bodies: The Brunn-Minkowski theory, Encyclopedia of Mathematics and Its Applications, vol. 44. Cambridge University Press, Cambridge (1993)
11. Wikipedia. https://en.wikipedia.org/wiki/Rotations_in_4-dimensional_Euclidean_space

[^0]: The author is supported in part by U.S. National Science Foundation Grant DMS-1600753.
 Dmitry Ryabogin
 ryabogin@math.kent.edu
 1 Department of Mathematics, Kent State University, Kent, OH 44242, USA

