ON THE p-INDEPENDENCE BOUNDEDNESS PROPERTY OF CALDERÓN-ZYGMUND THEORY

LOUKAS GRAFAKOS, PETR HONZÍK, AND DMITRY RYABOGIN

Abstract. For $0 \leq \alpha<1$ we construct examples of even integrable functions Ω on the unit sphere \mathbf{S}^{d-1} with mean value zero satisfying

$$
\underset{\xi \in \mathbf{S}^{d-1}}{\operatorname{es} \sup _{\mathbf{S}^{d-1}}}|\Omega(\theta)| \log ^{1+\alpha} \frac{1}{|\theta \cdot \xi|} d \theta<+\infty,
$$

such that the L^{2}-bounded singular integral operator T_{Ω} given by convolution with the distribution p.v. $\Omega(x /|x|)|x|^{-d}$ is not bounded on $L^{p}\left(\mathbf{R}^{d}\right)$ when $\left|\frac{1}{2}-\frac{1}{p}\right|>\frac{\alpha}{1+\alpha}$. In particular, we construct operators T_{Ω} that are bounded on L^{p} exactly when $p=2$.

1. Introduction

Let Ω be an even complex-valued integrable function on the sphere \mathbf{S}^{d-1}, with mean value zero with respect to the surface measure. We discuss the L^{p} boundedness properties of the Calderón-Zygmund singular integral operator

$$
\begin{equation*}
T_{\Omega}(f)(x)=\lim _{\varepsilon \rightarrow 0} \int_{|y|>\varepsilon} \frac{\Omega(y /|y|)}{|y|^{d}} f(x-y) d y=\text { p.v. } \int_{\mathbf{R}^{d}} \frac{\Omega(y /|y|)}{|y|^{d}} f(x-y) d y, \tag{1}
\end{equation*}
$$

initially defined for functions f in the Schwartz class $\mathcal{S}\left(\mathbf{R}^{d}\right)$. The singular integral operator T_{Ω} is given by convolution with the distribution p.v. $\Omega(x /|x|)|x|^{-d}$ whose Fourier transform is the homogeneous of degree zero function

$$
\begin{equation*}
m(\Omega)(\xi):=\left(\text { p.v. } \Omega(x /|x|)|x|^{-d}\right)^{\wedge}(\xi)=\int_{\mathbf{S}^{d-1}} \Omega(\theta) \log \frac{1}{|\xi \cdot \theta|} d \theta \tag{2}
\end{equation*}
$$

The L^{2} boundedness of T_{Ω} is equivalent to the condition that

$$
\begin{equation*}
m(\Omega) \in L^{\infty}\left(\mathbf{R}^{d}\right), \tag{3}
\end{equation*}
$$

i.e. $m(\Omega)$ is an essentially bounded function. Calderón and Zygmund [1], [2] have developed the theory of such singular integrals and have established their L^{p} boundedness in the range $1<p<\infty$ for Ω in $L \log L\left(\mathbf{S}^{d-1}\right)$. The more difficult issue of the weak type $(1,1)$ boundedness of such singular integrals with Ω in $L \log L\left(\mathbf{S}^{d-1}\right)$ was settled by Christ and Rubio de Francia [5] and Seeger [14].

[^0]The $\Omega \in L \log L$ condition is the sharpest possible, in some sense, that implies L^{p} boundedness for T_{Ω} in the whole range of $p \in(1, \infty)$, as indicated by Weiss and Zygmund [16]. A fundamental question in the subject is whether there exist other conditions on Ω that are L^{p} "sensitive", i.e. they imply that T_{Ω} is bounded on L^{p} for some p but not on L^{q} for some other index q. This question is motivated by the well-known p-independence boundedness property of Calderón-Zygmund operators with sufficiently smooth kernels, i.e. the fact that boundedness on one $L^{p_{0}}$ implies boundedness on all L^{p} with $1<p<\infty$. It has been an open question whether p-independence is still valid for all homogeneous singular integrals and if it fails, what condition is sensitive enough to differentiate boundedness between different L^{p} spaces.

A starting point for investigating this question is to ask whether (3) or even the slightly stronger condition

$$
\begin{equation*}
\operatorname{essup}_{\xi \in \mathbf{S}^{d-1}} \int_{\mathbf{S}^{d-1}}|\Omega(\theta)| \log \frac{1}{|\xi \cdot \theta|} d \theta<\infty \tag{4}
\end{equation*}
$$

suffices to imply that T_{Ω} is bounded on $L^{p}\left(\mathbf{R}^{d}\right)$ for some $p \neq 2$. In this work we prove that this is not the case. In fact, we construct examples of functions Ω that satisfy (4) such that T_{Ω} is bounded on $L^{p}\left(\mathbf{R}^{d}\right)$ exactly when $p=2$. This answers the above question in the negative: The p-independence boundedness property of Calderón-Zygmund theory fails for insufficiently smooth homogeneous kernels.
Next, for $\alpha \geq 0$ we denote by

$$
m_{\alpha}(\Omega)(\xi)=\int_{\mathbf{S}^{d-1}}|\Omega(\theta)| \log ^{1+\alpha} \frac{1}{|\theta \cdot \xi|} d \theta
$$

a function defined for $\xi \in \mathbf{S}^{d-1}$ that measures the integrability of Ω against a power of the logarithm that appears in (4) and we introduce the following conditions on Ω :

$$
\begin{equation*}
\operatorname{essup}_{\xi \in \mathbf{S}^{d-1}} m_{\alpha}(\Omega)(\xi)<+\infty \tag{5}
\end{equation*}
$$

These conditions become stronger as α increases and are known to imply boundedness for T_{Ω} when $1 / p$ lies in some nontrivial open interval centered at $1 / 2$, see [10], [8].

We sharpen the aforementioned result by showing the existence of functions Ω that satisfy (5) for some $\alpha>0$ such that the corresponding operators T_{Ω} are unbounded on $L^{p}\left(\mathbf{R}^{d}\right)$ for p away from 2. Precisely, we have the following:

Theorem 1. For every α satisfying $0 \leq \alpha<1$ there is an even integrable function Ω on \mathbf{S}^{d-1} with mean value zero that satisfies (5) such that the singular integral operator T_{Ω} is unbounded on $L^{p}\left(\mathbf{R}^{d}\right)$ whenever

$$
\begin{equation*}
\left|\frac{1}{2}-\frac{1}{p}\right|>\frac{\alpha}{1+\alpha} . \tag{6}
\end{equation*}
$$

In particular, there is a function Ω such that T_{Ω} is L^{p} bounded exactly when $p=2$.

2. The counterexample of Theorem 1

We only discuss the proof when $d=2$ as this example can be embedded in higher dimensional spaces. We fix an $0 \leq \alpha<1$. We construct a sequence of even functions Ω_{n} with mean value zero such that $m\left(\Omega_{n}\right)$ fails to be an L^{p} multiplier for any p satisfying (6) while Ω_{n} satisfies condition (5) uniformly in n.

To prove that the norm of a Fourier multiplier on \mathbf{R}^{2} is large, we are going to use a deLeeuw type transference argument (see [7]) in a way similar to that used in the article of Lebedev and Olevskii [11].
Lemma 1. Let $\left\{x_{k}\right\}_{k=1}^{l}$ be an arithmetic progression in \mathbf{R}^{2}. (This means that there is a vector v such that $x_{k}+v=x_{k+1}$ for $k=1, \ldots, l-1$.) Let m be a function on \mathbf{R}^{2} which is continuous at the points x_{k}. We define a Fourier multiplier sequence b on \mathbf{Z} by the formula $b(k)=m\left(x_{k}\right)$ for $1 \leq k \leq l$ and $b(k)=0$ otherwise. Then for some $c_{p}>0$, dependent only on $1<p<\infty$, the $L^{p}\left(\mathbf{R}^{2}\right)$ multiplier norm $\|m\|_{\mathcal{M}_{p}\left(\mathbf{R}^{2}\right)}$ of m is at least c_{p} times the $L^{p}(\mathbf{T})$ multiplier norm $\left\|\{b(k)\}_{k \in \mathbf{Z}}\right\|_{\mathcal{M}_{p}(\mathbf{Z})}$ of the sequence b.
Proof. To prove the lemma, by applying a translation, a dilation and a rotation, we may assume that the points $\left\{x_{k}\right\}_{k=1}^{l}$ are the points $\{(k, 0)\}_{k=1}^{l}$. Let R be the rectangle $\left[-\frac{1}{4}, l+\frac{1}{4}\right] \times\left[-\frac{1}{4}, \frac{1}{4}\right]$. The continuity of m at the points $\{(k, 0)\}_{k=1}^{l}$ allows us to use a classical transference theorem (see for instance [9] Theorem 3.6.7) to deduce that

$$
c_{p}^{-1}\|m\|_{\mathcal{M}_{p}\left(\mathbf{R}^{2}\right)} \geq\left\|m \chi_{R}\right\|_{\mathcal{M}_{p}\left(\mathbf{R}^{2}\right)} \geq\left\|\{b(k)\}_{k \in \mathbf{Z}}\right\|_{\mathcal{M}_{p}(\mathbf{Z})} .
$$

If $p \neq 2$, the Riesz basis $\left\{e^{2 \pi i k x}\right\}_{k=-\infty}^{\infty}$ of $L^{p}(\mathbf{T})$ is not unconditional. That means that for every $n=1,2, \ldots$ there are two sequences a_{k}^{n} and $\left|\varepsilon_{k}^{n}\right| \leq 1$ supported on the set $\{1, \ldots, n\}$ such that

$$
\begin{equation*}
\left\|\sum_{k=1}^{n} \varepsilon_{k}^{n} a_{k}^{n} e^{2 \pi i k x}\right\|_{L^{p}[0,1]} \geq K(n)\left\|\sum_{k=1}^{n} a_{k}^{n} e^{2 \pi i k x}\right\|_{L^{p}[0,1]}, \tag{7}
\end{equation*}
$$

where $K(n) \rightarrow \infty$ as $n \rightarrow \infty$. Using properties of the Rademacher functions we see that we can take $K(n)=c_{p}^{\prime} n^{|1 / 2-1 / p|}$, where c_{p}^{\prime} depends only on p.

Moreover, we can choose $\left(\varepsilon_{k}^{n}\right)_{k=1}^{n}$ such that

$$
\begin{gathered}
\left\|\left(\ldots, 0, \ldots, 0, \varepsilon_{1}^{n}, \varepsilon_{2}^{n}, \ldots, \varepsilon_{n}^{n}, 0, \ldots\right)\right\|_{M^{p}(\mathbf{Z})}= \\
\sup \left\{\left\|\left(\ldots, 0, \ldots, 0, \delta_{1}^{n}, \delta_{2}^{n}, \ldots, \delta_{n}^{n}, 0, \ldots\right)\right\|_{M^{p}(\mathbf{Z})}:\left|\delta_{k}^{n}\right| \leq 1, \quad k=1, \ldots, n\right\} .
\end{gathered}
$$

We fix $n \geq 1000$. Denote by I the angular sector from $\pi / 2$ to $3 \pi / 4$. Fix s_{0} large enough. For $k \in\{1,2, \ldots, 2 n\}$, we introduce points $x_{k}=\left(t_{k}, s_{0}\right) \in \mathbf{Z}^{2} \cap I$ and disjoint open cones I^{k} centered at the origin whose bisector passes through of the points x_{k} so that (a) the arc $I^{k} \cap \mathbf{S}^{1}$ has length roughly (20n) ${ }^{-1}$ and (b) the distance between the points $x_{k} /\left|x_{k}\right|$ and $x_{k+1} /\left|x_{k+1}\right|$ is about n^{-1}.

For $x \in \mathbf{R}^{2}$ let

$$
x^{\perp}=\left\{y \in \mathbf{R}^{2}: x \cdot y=0\right\} .
$$

Now let \tilde{x}_{k} be the single element of $x_{k}^{\perp} \cap \mathbf{S}^{1}$ which lies in the first quadrant (its argument lies in $(0, \pi / 4)$) and let $A_{k}^{\epsilon_{n}}, k=1, \ldots, 2 n$, be pairwise disjoint arcs of small length ϵ_{n} (to be chosen later) contained in \mathbf{S}^{1} and centered at \tilde{x}_{k}.

Define

$$
\begin{equation*}
\omega_{k}^{\epsilon_{n}}=C\left(n, \epsilon_{n}\right) \sum_{j=0}^{3}(-1)^{j} \chi_{A_{k}^{\epsilon_{n}}+\frac{j \pi}{2}} \tag{8}
\end{equation*}
$$

where $A_{k}^{\epsilon_{n}}+\frac{j \pi}{2}$ are the translations of the arcs $A_{k}^{\epsilon_{n}}$ along \mathbf{S}^{1} by the amounts $\frac{j \pi}{2}$. Finally we introduce the function

$$
\Omega_{n}=\sum_{k=1}^{2 n}(-1)^{k} \varepsilon_{[(k+1) / 2]}^{n} \omega_{k}^{\epsilon_{n}}
$$

where [] denotes the integer part. The normalization constant $C\left(n, \epsilon_{n}\right)$ is chosen so that

$$
m_{\alpha}\left(\omega_{k}^{\epsilon_{n}}\right)\left(x_{k} /\left|x_{k}\right|\right)=1 / 2
$$

Set

$$
D\left(n, \epsilon_{n}\right)=m\left(\omega_{k}^{\epsilon_{n}}\right)\left(x_{k}\right)=m\left(\omega_{k}^{\epsilon_{n}}\right)\left(x_{k} /\left|x_{k}\right|\right)
$$

and note that in view of rotational invariance the constants $C\left(n, \epsilon_{n}\right)$ and $D\left(n, \epsilon_{n}\right)$ do not depend on k. Also notice that

$$
\begin{aligned}
& \sup _{x} m_{\alpha}\left(\omega_{k}^{\epsilon_{n}}\right)(x)=m_{\alpha}\left(\omega_{k}^{\epsilon_{n}}\right)\left(x_{k} /\left|x_{k}\right|\right) \text { and } \\
& \sup _{x}\left|m\left(\omega_{k}^{\epsilon_{n}}\right)(x)\right|=\left|m\left(\omega_{k}^{\epsilon_{n}}\right)\left(x_{k}\right)\right|=\left|m\left(\omega_{k}^{\epsilon_{n}}\right)\left(x_{k} /\left|x_{k}\right|\right)\right| .
\end{aligned}
$$

We will make use of the following auxiliary estimates.
Lemma 2. We have

$$
C\left(n, \epsilon_{n}\right) \approx \epsilon_{n}^{-1}\left|\log \epsilon_{n}\right|^{-1-\alpha}
$$

and

$$
D\left(n, \epsilon_{n}\right) \approx\left|\log \epsilon_{n}\right|^{-\alpha}
$$

for all $x \notin \cup_{j=0}^{3}\left(I^{k}+\frac{j \pi}{2}\right) \cap \mathbf{S}^{1}$

$$
\begin{equation*}
m_{\alpha}\left(\omega_{k}^{\epsilon_{n}}\right)(x) \lesssim(\log n)^{1+\alpha}\left|\log \epsilon_{n}\right|^{-1-\alpha} \tag{9}
\end{equation*}
$$

and for $x \notin\left(\cup_{j=0}^{3}\left(I^{2 k}+\frac{j \pi}{2}\right)\right) \cup\left(\cup_{j=0}^{3}\left(I^{2 k-1}+\frac{j \pi}{2}\right)\right) \cap \mathbf{S}^{1}$ and $1 \leq k \leq n$

$$
\begin{equation*}
\left|\varepsilon_{k}^{n} m\left(\omega_{2 k}^{\epsilon_{n}}\right)(x)-\varepsilon_{k}^{n} m\left(\omega_{2 k-1}^{\epsilon_{n}}\right)(x)\right| \lesssim \frac{\left|\log \epsilon_{n}\right|^{-1-\alpha}}{n\left|x-x_{2 k}\right|} \tag{10}
\end{equation*}
$$

Proof. These estimates are straightforward. To prove (10) we use the mean value theorem for integrals and we estimate $|\log u-\log v|$ by $c \frac{|u-v|}{|v|}$ when $|u-v|$ is small.

Recall the fixed constants ε_{k}^{n} in (7). We examine properties of the function Ω_{n}. Observe that

$$
\begin{equation*}
\left\|\Omega_{n}\right\|_{L^{1}\left(\mathbf{S}^{1}\right)} \lesssim n\left|\log \epsilon_{n}\right|^{-1-\alpha} \tag{11}
\end{equation*}
$$

and note that in view of (9) we have

$$
\begin{equation*}
\left\|m_{\alpha}\left(\Omega_{n}\right)\right\|_{L^{\infty}\left(\mathbf{S}^{1}\right)} \lesssim n(\log n)^{1+\alpha}\left|\log \epsilon_{n}\right|^{-1-\alpha} . \tag{12}
\end{equation*}
$$

On the other hand,

$$
m\left(\Omega_{n}\right)\left(x_{k}\right)=D\left(n, \epsilon_{n}\right) \varepsilon_{k}^{n}+\sum_{1 \leq i \neq k \leq 2 n}(-1)^{i} \varepsilon_{[(i+1) / 2]}^{n} m\left(\omega_{i}^{\epsilon_{n}}\right)\left(x_{k}\right)=D\left(n, \epsilon_{n}\right) \varepsilon_{k}^{n}+o_{k}^{n}
$$

and (10) implies $\left|o_{k}^{n}\right| \leq D\left(n, \epsilon_{n}\right) / 4$ as long as

$$
\text { constant }(\log n)\left|\log \epsilon_{n}\right|^{-1-\alpha} \leq \frac{1}{4}\left|\log \epsilon_{n}\right|^{-\alpha}
$$

which is equivalent to

$$
\begin{equation*}
n^{4 \text { constant }} \lesssim \epsilon_{n}^{-1} \tag{13}
\end{equation*}
$$

The function $m\left(\Omega_{n}\right)$ is continuous at the points x_{k}, since $m\left(\omega_{k}^{\epsilon_{n}}\right)$ is continuous at $x_{k} /\left|x_{k}\right|$ as a circular convolution of $L^{1}\left(\mathbf{S}^{1}\right)$ and $L^{\infty}\left(\mathbf{S}^{1}\right)$ functions. By Lemma 1 applied to points x_{k} we get that the L^{p} multiplier norm of $m\left(\Omega_{n}\right)$ is comparable to $C_{p} D\left(n, \epsilon_{n}\right) n^{\left|\frac{1}{2}-\frac{1}{p}\right|}$. Indeed,

$$
\begin{aligned}
\left\|m\left(\Omega_{n}\right)\right\|_{M^{p}\left(\mathbf{R}^{2}\right)} & \geq c_{p}\left\|\left(\ldots, 0, m\left(\Omega_{n}\right)\left(x_{1}\right), m\left(\Omega_{n}\right)\left(x_{2}\right), \ldots, m\left(\Omega_{n}\right)\left(x_{n}\right), 0, \ldots\right)\right\|_{M^{p}(\mathbf{Z})} \\
& \geq c D\left(n, \epsilon_{n}\right)\left(\left\|\left(\ldots, 0, \ldots, 0, \varepsilon_{1}^{n}, \varepsilon_{2}^{n}, \ldots, \varepsilon_{n}^{n}, 0, \ldots\right)\right\|_{M^{p}(\mathbf{Z})}-\right. \\
& \left.\left\|\left(\ldots, 0, o_{1}^{n}, o_{2}^{n}, \ldots, o_{n}^{n}, 0, \ldots\right) / D\left(n, \epsilon_{n}\right)\right\|_{M^{p}(\mathbf{Z})}\right) \\
& \geq \frac{1}{2} c D\left(n, \epsilon_{n}\right) n^{\left|\frac{1}{2}-\frac{1}{p}\right|}
\end{aligned}
$$

since the inequality

$$
\left\|\frac{\left(\ldots, 0, o_{1}^{n}, o_{2}^{n}, \ldots, o_{n}^{n}, 0, \ldots\right)}{D\left(n, \epsilon_{n}\right)}\right\|_{M^{p}(\mathbf{Z})}>\frac{1}{2}\left\|\left(\ldots, 0, \varepsilon_{1}^{n}, \varepsilon_{2}^{n}, \ldots, \varepsilon_{n}^{n}, 0, \ldots\right)\right\|_{M^{p}(\mathbf{Z})}
$$

would contradict the choice of $\left(\varepsilon_{k}^{n}\right)_{k=1}^{n}$. This shows that the L^{p} operator norm of $T_{\Omega_{n}}$ is at least a constant multiple of

$$
\begin{equation*}
D\left(n, \epsilon_{n}\right) n^{\left|\frac{1}{2}-\frac{1}{p}\right|} \approx\left|\log \epsilon_{n}\right|^{-\alpha} n^{\left|\frac{1}{2}-\frac{1}{p}\right|} \tag{14}
\end{equation*}
$$

We select ϵ_{n} satisfying

$$
n(\log n)^{(1+\alpha)}=\left|\log \epsilon_{n}\right|^{1+\alpha},
$$

and we note that (13) holds for this choice of ϵ_{n}. Also observe that (12) gives $\left\|m_{\alpha}\left(\Omega_{n}\right)\right\|_{L^{\infty}\left(\mathbf{S}^{1}\right)} \lesssim 1$, (11) yields $\left\|\Omega_{n}\right\|_{L^{1}\left(\mathbf{S}^{1}\right)} \lesssim 1$, while (14) gives

$$
\left\|T_{\Omega_{n}}\right\|_{L^{p} \rightarrow L^{p}} \geq n^{\left|\frac{1}{2}-\frac{1}{p}\right|-\frac{\alpha}{1+\alpha}}(\log n)^{-\alpha}
$$

We conclude that $\left\|T_{\Omega_{n}}\right\|_{L^{p} \rightarrow L^{p}}$ goes to infinity with n as long as $\left|\frac{1}{2}-\frac{1}{p}\right|>\frac{\alpha}{1+\alpha}$.
The existence of the function Ω claimed in Theorem 1 is a consequence of the uniform boundedness principle. Denote by \mathcal{B}_{α} the Banach space of all even integrable functions Ω on \mathbf{S}^{1} with mean value zero with norm

$$
\|\Omega\|_{\mathcal{B}_{\alpha}} \equiv\|\Omega\|_{L^{1}\left(\mathbf{S}^{1}\right)}+\left\|m_{\alpha}(\Omega)\right\|_{L^{\infty}\left(\mathbf{S}^{1}\right)}<\infty .
$$

Consider the family of linear maps from $\mathcal{B}_{\alpha} \rightarrow L^{p}\left(\mathbf{R}^{n}\right)$

$$
\Omega \rightarrow T_{\Omega}(f)
$$

indexed by functions in the set $U=\left\{f \in L^{p}\left(\mathbf{R}^{n}\right):\|f\|_{L^{p}}=1\right\}$. If no Ω as in Theorem 1 existed, then for all $\Omega \in \mathcal{B}_{\alpha}$ we would have

$$
\sup _{f \in U}\left\|T_{\Omega}(f)\right\|_{L^{p}} \leq C(\Omega)<\infty .
$$

The uniform boundedness principle implies the existence of a constant $K<\infty$ such that

$$
\left\|T_{\Omega}\right\|_{L^{p} \rightarrow L^{p}}=\sup _{f \in U}\left\|T_{\Omega}(f)\right\|_{L^{p}} \leq K\|\Omega\|_{\mathcal{B}_{\alpha}}
$$

for all $\Omega \in \mathcal{B}_{\alpha}$. But this clearly contradicts the construction of the Ω_{n} 's whenever $\left|\frac{1}{2}-\frac{1}{p}\right|>\frac{\alpha}{1+\alpha}$. This concludes the proof of Theorem 1.

3. Final Remarks

It is natural to ask whether boundedness holds for T_{Ω} outside the region ruled out by Theorem 1. This question was previously addressed and partially answered by Grafakos and Stefanov [10] who showed that condition (5) implies the boundedness of T_{Ω} on $L^{p}\left(\mathbf{R}^{d}\right)$ for p satisfying $\left|\frac{1}{2}-\frac{1}{p}\right|<\frac{\alpha}{2(2+\alpha)}$. A sharper version of this theorem where $\frac{\alpha}{2(2+\alpha)}$ is replaced by $\frac{\alpha}{2(1+\alpha)}$ was obtained by Fan, Guo, and Pan [8].

The issue of the sufficiency of condition (5) for the L^{p} boundedness of T_{Ω} remains unanswered for p 's satisfying $\frac{\alpha}{2(1+\alpha)} \leq\left|\frac{1}{2}-\frac{1}{p}\right| \leq \frac{\alpha}{1+\alpha}$ whenever $0<\alpha<1$. It is possible that for $\alpha>1, T_{\Omega}$ is bounded on L^{p} for all $1<p<\infty$ whenever (5) is satisfied, but this is also unknown at present. We note that for zonal functions Ω, condition (4) suffices for the boundedness of T_{Ω} on all L^{p} spaces $(1<p<\infty)$ as proved by Ryabogin and Rubin [13].

It should be noted that the counterexamples discussed in this paper are related to those that indicate the sharpness in the Coifman-Rubio de Francia-Semmes condition [6] in terms of the s-variation of the multipliers. They are also related in spirit to the work of Carbery, Christ, Vance, Wainger, and Watson [3], Christ [4], Seeger, Wainger, Wright, and Ziesler [15], as well as the work of Olevskii [12].

The authors would like to thank to N. Kalton for a hint on the best value of the constant in (7).

References

[1] A. P. Calderón and A. Zygmund, On the existence of certain singular integrals, Acta Math. 88 (1952), 85-139.
[2] A. P. Calderón and A. Zygmund, On singular integrals, Amer. J. Math. 78 (1956), 289-309.
[3] A. Carbery, M. Christ, J. Vance, S. Wainger, and D. Watson, Operators associated to flat plane curves: L^{p} estimates via dilation methods, Duke Math. J. 59 (1989), 675-700.
[4] M. Christ, Examples of singular maximal functions unbounded on L^{p}, Conference on Mathematical Analysis (El Escorial 1989) Publ. Math. 35 (1991), 269-279.
[5] M. Christ and J.-L. Rubio de Francia, Weak type $(1,1)$ bounds for rough operators II, Invent. Math. 93 (1988), 225-237.
[6] R. R. Coifman, J.-L. Rubio de Francia, and S. Semmes, Multiplicateurs de Fourier de $L^{p}(R)$ et éstimations quadratiques, C. R. Acad. Sci. Paris Sér. I Math. 306 (1988), 351-354.
[7] K. deLeeuw, On L ${ }^{p}$ multipliers, Ann. Math, 81 (1964), 364-379.
[8] D. Fan, K. Guo, and Y. Pan, A note of a rough singular integral operator, Math. Ineq. and Appl., 2 (1999), 73-81.
[9] L. Grafakos, Classical and Modern Fourier Analysis, Pearson Education, Upper Saddle River, NJ 2004.
[10] L. Grafakos and A. Stefanov, L^{p} bounds for singular integrals and maximal singular integrals, Indiana Univ. Math. J., 47 (1998), 455-469.
[11] V. Lebedev and A. Olevskii, Idempotents of Fourier multiplier algebra, Geom. Funct. Anal. 4 (1994), 539-544.
[12] V. Olevskii, A note on Fourier multipliers and Sobolev spaces. Functions, series, operators (Budapest 1999), 321-325, János Bolyai Math. Soc., Budapest, 2002.
[13] D. Ryabogin and B. Rubin, Singular integrals generated by zonal measures, Proc. Amer. Math. Soc., 130 (2002), 745-751.
[14] A. Seeger, Singular integral operators with rough convolution kernels, Jour. Amer. Math. Soc., 9 (1996), 95-105.
[15] A. Seeger, S. Wainger, J. Wright, and S. Ziesler, Classes of singular integrals along curves and surfaces, Trans. Amer. Math. Soc. 351 (1999), 3757-3769.
[16] M. Weiss and A. Zygmund, An example in the theory of singular integrals, Studia Math. 26 (1965), 101-111.

Loukas Grafakos, Department of Mathematics, University of Missouri, Columbia, MO 65211, USA

E-mail address: loukas@math.missouri.edu
Petr Honzík, Department of Mathematics, Michigan State University, East Lansing, MI 48824, USA

E-mail address: honzik@gmail.com
Dmitry Ryabogin, Department of Mathematics, Kansas State University, Manhattan, KS 66503 USA

E-mail address: ryabs@math.ksu.edu

[^0]: 1991 Mathematics Subject Classification. Primary 42B20. Secondary 42E30.
 Key words and phrases. Homogeneous Calderón-Zygmund singular integrals, rough kernels.
 Grafakos' research was partially supported by the NSF under grant DMS0400387 and by the University of Missouri Research Council. Honzík was supported by 201/03/0931 Grant Agency of the Czech Republic. Ryabogin's research was partially supported by the NSF under grant DMS0400789.

