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Abstract. Let f be an integrable log-concave function on Rn with the center of

mass at the origin. We show that
∞∫
0

f(sθ)ds > e−n
∞∫
−∞

f(sθ)ds for every θ ∈ Sn−1,

and the constant e−n is the best possible.

1. Introduction

The classical Grünbaum inequality asserts that for every convex body K ⊂ Rd

with the center of mass at the origin, and every half-space H whose boundary plane
contains the origin, we have

vold(K ∩H) >
( d

d+ 1

)d
vold(K),

and the equality is attained for any cone and the half-space containing the vertex of
the cone bounded by the hyperplane parallel to the cone base.

The functional version of the Grünbaum inequality (due to Lovász and Vempala,
[LV]) is

∞∫
0

f(x)dx > e−1

∞∫
−∞

f(x)dx,

and the constant e−1 is sharp. Here f is any non-negative integrable log-concave

function such that
∞∫
−∞

xf(x)dx = 0.

The following question was asked in [FMY]. Suppose that L is a plane of codimen-
sion n−1 (n > 2) passing though the origin and HL ⊂ L is a half-plane with the origin
on its boundary. How small can vold−n+1(K ∩HL) be compared to vold−n+1(K ∩L)?

This question has a direct analogue for log-concave functions as well: Find the best
constant a such that the inequality

(1)

∞∫
0

f(sθ)ds > a

∞∫
−∞

f(sθ)ds
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holds for every non-negative integrable log-concave function f : Rn → R satisfying∫
Rn

xf(x)dx = 0 and for every unit vector θ. In this note we show that a = e−n.

The relation between the functional and the body versions is that the best constant
in the body version is always not less than the constant in the functional one and
they are asymptotically equal when the ambient dimension d tends to infinity.

2. An example

Consider the function f(x) = 1C(x)e−x1 , where

C = {x ∈ Rn : x1 > −n, x2
2 + · · ·+ x2

n 6 (x1 + n)2}
is the infinite cone with the vertex at (−n, 0, . . . , 0) and the axis along the vector
θ = (1, 0 . . . , 0). It is easy to see that f is log-concave and

∫
Rn

xf(x)dx = 0. Indeed,

any coordinate except the first one integrates to 0 by symmetry and∫
Rn

x1f(x)dx = c

∞∫
−n

s(s+ n)n−1e−sds

= c
( ∞∫
−n

(s+ n)ne−sds− n
∞∫
−n

(s+ n)n−1e−sds
)

= cen(n!− n(n− 1)!) = 0.

On the other hand, we have
∞∫

−∞

f(sθ)ds =

∞∫
−n

e−sds = en, and

∞∫
0

f(sθ)ds =

∞∫
0

e−sds = 1.

Thus, the best possible value of a does not exceed e−n. It remains to show that (1)
always holds with the constant a = e−n. Everywhere below we shall assume that f is
positive in the entire space, continuous, strictly logarithmically concave and decays
to zero at infinity faster than any exponential function. The general case can be
reduced to this one by standard density arguments.

3. The one-dimensional case

The case n = 1 is well-known but we shall still present a proof to motivate the
constructions in the following sections. Note that the proof we outline in this section
is by no means the shortest one. However it has the advantage of being “natural”
enough (at least for us) to provide the guidelines for the more involved argument in
the multidimensional case.

Let f : R → R be a positive continuous strictly log-concave function decaying to
zero at infinity faster than any exponent and with the center of mass at the origin,

i.e.,
∞∫
−∞

xf(x)dx = 0. Then we can choose β > 0 such that
∞∫
0

f(0)e−βxdx =
∞∫
0

f(x)dx.
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Note that, due to the strict log-concavity of f and the fast decay property, the graphs
of f and x 7→ f(0)e−βx intersect in the way shown on Figure 1;

x0Ψ 0

I

II

III

IV

Figure 1. The comparison function

i.e., there is x0 > 0 such that f(x) 6 f(0)e−βx on (−∞, 0] ∪ [x0,∞) and f(x) >
f(0)e−βx on [0, x0].

Define the new function F (x) = 1[Ψ,+∞)(x)f(0)e−βx, where Ψ < 0 is chosen so

that
∞∫
−∞

F (x)dx =
∞∫
−∞

f(x)dx. Notice that we also have
∞∫
0

F (x)dx =
∞∫
0

f(x)dx, and,

thereby,
0∫
−∞

F (x)dx =
0∫
−∞

f(x)dx. Observe that the center of mass of F lies to the

right of the origin. This is clear from the physical point of view because, when
switching from f to F , we move the mass from area I to area II and from area III
to area IV , i.e., always to the right.

The formal computation is

∞∫
−∞

x(F (x)− f(x))dx =

0∫
−∞

x(F (x)− f(x))dx+

∞∫
0

x(F (x)− f(x))dx =

0∫
−∞

(x−Ψ)(F (x)− f(x))dx+

∞∫
0

(x− x0)(F (x)− f(x))dx > 0

(both integrands are non-negative).
Thus, if we shift the function F to the left so that the center of mass moves to

the origin, we will diminish the integral
∞∫
0

F (x)dx without changing
∞∫
−∞

F (x)dx, so

the constant a we can use for f is at least as large as the one that can be used
for F . However, F is a pure truncated exponent and it is easy to check that the
corresponding ratio of the integrals is e−1 regardless of the values of β and f(0).
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4. Replacing the slices fx′(s) by exponential functions

Let us now turn to the multidimensional case. We shall apply the construction of
the previous section to the slice f0(s) = f(sθ) of the function f , i.e., we shall choose

β > 0 such that
∞∫
0

f(sθ)ds =
∞∫
0

f(0)e−βsds and get the comparison function F0(s) =

1[Ψ(0),+∞)(s)f(0)e−βs. Now we shall fix this value of β for the rest of the argument.
Our aim will be to make a similar replacement of every slice fx′(s) = f(x′ + sθ),
x′ ∈ θ⊥ ∼= Rn−1 by a function Fx′(s) = 1[Ψ(x′),+∞)(s)H(x′)e−βs. Note that we shall
use the same β > 0 for every slice. However we are still free to choose any “height”
H(x′) we want. Our goal will be to ensure that the resulting function F (x) = Fx′(x1)
will still be log-concave and its center of mass will lie on the line `θ = {sθ : s ∈ R}
to the right of the origin.

That the center of mass of F still lies on the line is automatic because we have
not changed the total mass of any slice. To make sure that it lies to the right of the
origin, it is enough to ensure that the center of mass of every slice moves to the right
after the replacement. That will be achieved by choosing the height function H in
an appropriate way.

5. The critical height

Let f : R → R be a positive continuous strictly log-concave function tending to
zero at infinity faster than any exponential function. The critical height of f is the

unique number H such that for h > H we have
∞∫
a

f(x)dx 6
∞∫
a

he−βxdx for all a ∈ R,

but for every h < H there exists a ∈ R such that
∞∫
a

f(x)dx >
∞∫
a

he−βxdx. In other

words, H = max
a
βeβa

∞∫
a

f(x)dx.

The critical height is quite easy to visualize geometrically. It is just the number H
such that the integrals of f and He−βx from the x-coordinate of the left intersection
point of their graphs to +∞ are equal (see Figure 2).

0

H

I

II

Figure 2. The critical height H
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The key property of the critical height is that if h > H and Ψ ∈ R is such

that
∞∫
Ψ

he−βxdx =
∞∫
−∞

f(x)dx, then the center of mass of the function F (x) =

1[Ψ,+∞)(x)he−βx is to the right of that of f . Again, it is obvious from the physi-
cal standpoint because we can move all the excessive mass in area I to area II. For
the formal computations, just use the integration by parts:

∞∫
−∞

x(F (x)− f(x))dx =

∞∫
−∞

da

∞∫
a

(F (x)− f(x))dx > 0

because the inner integral is always non-negative by the definition of the critical
height.

Now let H0(x′) be the critical height of fx′ . Then H0(0) = f(0). We claim that
H0(x′) is a continuous logarithmically concave function of x′. Indeed, the continuity
of H0 follows from the continuity and the fast decay of f . Suppose that x′1 and x′2
are any two points in θ⊥ and h1 < H0(x′1), h2 < H0(x′2). Then there exist a1, a2 ∈ R
such that

∞∫
aj

f(x′j + sθ)ds >

∞∫
aj

hje
−βsds, j = 1, 2.

However, since f is log-concave, by the Prékopa-Leindler inequality (see [Ba], Lecture
5) we have

+∞∫
a1+a2

2

f
(x′1 + x′2

2
+ sθ

)
ds >

√√√√√ +∞∫
a1

f(x′1 + sθ)ds

+∞∫
a2

f(x′2 + sθ)ds >

√√√√√ +∞∫
a1

h1e−βsds

+∞∫
a2

h2e−βsds =

+∞∫
a1+a2

2

√
h1h2e

−βsds,

which means that
√
h1h2 < H0(

x′1+x′2
2

). Since h1 < H0(x′1) and h2 < H0(x′2) are

arbitrary, we conclude that H0(
x′1+x′2

2
) >

√
H0(x′1)H0(x′2).

Thus, we can choose a linear function L : θ⊥ → R such that H0(x′) 6 f(0)eL(x′)

for every x′ ∈ θ⊥. Now, if we choose the height function H(x′) = f(0)eL(x′), we will
move the center of mass to the right in every slice when replacing fx′ by Fx′ .

6. Convexity and growth of Ψ

Recall that Ψ(x′) is defined by the equation

H(x′)

β
e−βΨ(x′) =

∞∫
Ψ(x′)

H(x′)e−βsds =

∞∫
−∞

f(x′ + sθ)ds.
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Thus,

Ψ(x′) = − 1

β

(
log

β

f(0)
− L(x′) + log

( ∞∫
−∞

f(x′ + sθ)ds
))
.

Since L is linear and x′ 7→
∞∫
−∞

f(x′ + sθ)ds is log-concave, we conclude that Ψ is

convex. Moreover, since f decays to zero at infinity faster than any exponent, we
see that Ψ(x′) grows to +∞ faster than any linear function as x′ → ∞. Hence,
the comparison function F (x) = 1[Ψ(x′),+∞)(x1)f(0)eL(x′)−βx1 is supported by the
convex domain {x ∈ Rn : x1 > Ψ(x′)} and is purely exponential in that domain.
Moreover, the center of mass of F is on the line `θ to the right of the origin and
∞∫
−∞

F (sθ)ds =
∞∫
−∞

f(sθ)ds,
∞∫
0

F (sθ)ds =
∞∫
0

f(sθ)ds. Thus, if we move F in the

direction −θ so that the center of mass moves to the origin, then the ratio of the
corresponding integrals for F will be less than or equal to the one for f . Therefore, it
is enough to investigate the functions of the type F (x) = 1Q(x)f(0)eL(x′)−βx1 , where
Q = {x ∈ Rn : x1 > Ψ(x′)} is an unbounded convex domain lying to the right of the
graph of a convex function Ψ : θ⊥ → R growing faster than any linear function at
infinity and such that F (x) has the center of mass at the origin.

7. Symmetrization

Let us now consider the “level planes” {x ∈ Rn : L(x′) − βx1 = const}. Since Ψ
grows faster than any linear function, all sections ofQ by the level planes are bounded.
We shall symmetrize Q by replacing any such section by the (n− 1)-dimensional ball
lying in the same plane and of the same (n− 1)-dimensional volume centered on the
line `θ (see Figure 3).

Q

Figure 3. Symmetrization

Note that this operation leaves the center of mass at the origin. Indeed, since every
section of the symmetrized body by a level plane has its center of mass on `θ, the
center of mass of the whole body stays on `θ. On the other hand, since the masses of
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sections of Q by level planes are preserved, it can move only in the direction of the
level planes, which is transversal to `θ.

Also, after this operation the integral
∞∫
0

F (sθ)ds stays the same while the integral

∞∫
−∞

F (sθ)ds may only increase (due to the extension of the support of the restriction

of F to the line `θ). We can also apply an appropiate linear transformation that
makes the level planes perpendicular to θ. So we need only to consider the functions
F (x) = 1Q(x)e−βx1 , where Q is an unbounded (from the right) convex body of
revolution around the axis `θ.

8. The comparison cone

Let now s0θ (s0 < 0) be the point on the boundary of the body of revolution Q.
Let B be the cross-section of Q by the plane θ⊥ (see Figure 4).

0s0θ

QB

Figure 4. The comparison cone

Consider the infinite cone C with the vertex s0θ whose cross-section by θ⊥ is also

B and the function F̃ (x) = 1C(x)e−βx1 . The restriction of F̃ to `θ coincides with

that of F , so to finish the proof, it will suffice to show that the center of mass of F̃

lies to the right of the origin. But we have x1(F̃ (x)− F (x)) > 0 and, thereby,∫
Rn

x1F̃ (x)dx =

∫
Rn

x1(F̃ (x)− F (x))dx > 0.
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