
A REMARK ON THE MAHLER CONJECTURE: LOCAL
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Abstract. We prove that the unit cube Bn
∞ is a strict local minimizer for the

Mahler volume product voln(K)voln(K∗) in the class of origin symmetric convex
bodies endowed with the Banach-Mazur distance.

1. Introduction

In 1939 Mahler [Ma] asked the following question. Let K ⊂ Rn, n > 2, be a convex
origin-symmetric body and let

K∗ := {ξ ∈ Rn : x · ξ 6 1 ∀x ∈ K}
be its polar body. Define P(K) = voln(K)voln(K∗). Is it true that we always have

P(K) > P(Bn
∞),

where Bn
∞ = {x ∈ Rn : |xi| 6 1, 1 6 i 6 n}?

Mahler himself proved in [Ma] that the answer is affirmative when n = 2. There
are several other proofs of the two-dimensional result, see for example the proof of
M. Meyer, [Me2], but the question is still open even in the three-dimensional case.

In the n-dimensional case, the conjecture has been verified for some special classes
of bodies, namely, for bodies that are unit balls of Banach spaces with 1-unconditional
bases, [SR], [R2], [Me1], and for zonoids, [R1], [GMR].

Bourgain and Milman [BM] (see also [Pi]) proved the inequality

P(K)1/n > cP(Bn
∞)1/n,

with some constant c > 0 independent of n. The best known constant c = π/4 is due
to Kuperberg [Ku].

Note that the exact upper bound for P(K) is known:

P(K) 6 P(Bn
2 ),

where Bn
2 is the n-dimensional Euclidean unit ball. This bound was proved by Santalo

[Sa]. In [Pe] and [MeP] it was shown that the equality holds only if K is an ellipsoid.
Let dBM(K, L) = inf{b/a : ∃T ∈ GL(n) such that aK ⊆ TL ⊆ bK} be the

Banach-Mazur multiplicative distance between bodies K,L ⊂ Rn. In this paper we
prove the following result.
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Theorem. Let K ⊂ Rn be an origin-symmetric convex body. Then

P(K) > P(Bn
∞),

provided that dBM(K,Bn
∞) 6 1+ δ, and δ = δ(n) > 0 is small enough. Moreover, the

equality holds only if dBM(K,Bn
∞) = 1, i.e., if K is a parallelepiped.

Acknowledgment. We are indebted to Mathieu Meyer for valuable discussions.

Notation. Given a set F ⊂ Rn, we define af(F ) to be the affine subspace of the
minimal dimension containing F , and l(F ) to be the linear subspace parallel to af(F )
of the same dimension. The boundary of a convex body K is denoted by ∂K. For a
given set P ⊂ Rn, we write P⊥ = {x ∈ Rn : x · y = 0, ∀y ∈ P}. Let F be the set of
all faces F of all dimensions of the cube Bn

∞. We denote by cF the center of a face
F ∈ F . We also denote Bn

p = {x ∈ Rn :
∑

i |xi|p 6 1}.
By C and c (with various indices and superscripts) we denote large and small

positive constants respectively that may change from line to line and may depend on
the dimension n, but on nothing else.

2. Description of the proof

The first difficulty in proving local minimality of the unit cube is that there are
plenty of small perturbations with the same volume product, namely all close paral-
lelepipeds. We overcome this difficulty by choosing a “canonical representative” in
each class of affinely equivalent convex bodies. More precisely, we consider only the
bodies K for which the unit cube is a parallelepiped of the least volume containing
K. In addition to taking care of all close parallelepipeds, it allows us to fix 2n points
on the boundary of K and K∗ (the centers of the (n− 1)-dimensional faces of Bn

∞).
Our next step is to choose several additional points on the boundary of K and K∗

and to construct two (not necessarily convex) polytopes P ⊂ K and Q ⊂ K∗ such
that

voln(P )voln(Q) > P(Bn
∞)− Cδ2,

where δ is the least positive number for which (1−δ)Bn
∞ ⊂ K. We conclude that Bn

∞
is a lower semi-stationary point for the volume product functional P . This means that
the perturbation of Bn

∞ by δ in the Banach-Mazur distance may result in decreasing
the product volume only by δ2, i.e., in the second order rather than in the first. Our
last step is to show that either K contains a point outside (1 + cδ)P or K∗ contains
a point outside (1 + cδ)Q for some small positive c. This allows us to conclude that
P(K) exceeds voln(P )voln(Q) by at least cδ and get the final estimate

P(K) > P(Bn
∞) + cδ − Cδ2

from which the strict local minimality follows immediately.
It is worth mentioning that the first part of the proof (lower semi-stationarity)

works equally well for some other polytopes, for example, for the regular icosahedron
and dodecahedron in R3. This indicates that the widely discussed idea to prove the
Mahler conjecture by creating some kind of “gradient flow” on the class of convex
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bodies with respect to the volume product functional may be harder to realize than
it seems.

3. Auxiliary results

Note that P(TK) = P(K) for all T ∈ GL(n). We will use this fact for choosing a
canonical position for K.

Lemma 1. Let P be a parallelepiped of minimal volume containing a convex origin-
symmetric body K (note that every such parallelepiped is origin symmetric as well).
Let T : Rn → Rn be a linear transformation such that P = TBn

∞. Then T−1K ⊂ Bn
∞

and ±ej ∈ ∂T−1K, j = 1, ..., n.

Proof. Note that Bn
∞ is a parallelepiped of minimal volume containing T−1K. If

ej 6∈ T−1K, then there exists an affine hyperplane H 3 ej such that H ∩ T−1K =
∅. Note that the volume of the parallelepiped bounded by H,−H, and the affine
hyperplanes {x : x · ei = ±1}, i 6= j, equals voln(Bn

∞), and that this parallelepiped
still contains K. But then we can shift H and −H towards K a little bit and a get
a new parallelepiped of smaller volume containing K. ¤

We shall need the following simple technical lemma.

Lemma 2. Let P ⊂ Rn be a star-shaped (with respect to the origin) polytope such that
every (n−1)-dimensional face F of P has area at least A and satisfies dist(af(F ), 0) >
r, where dist denotes the Euclidean distance. Let x 6∈ (1+ δ)P for some δ > 0. Then

voln(conv(P, x)) > voln(P ) +
δrA

n
.

Proof. Let y = ∂P ∩ [0, x]. Let F be a face of P containing y. Then conv(P, x) \ P
contains the pyramid with base F and apex x. The assumptions of the lemma imply
that the height of this pyramid is at least δ dist(af(F ), 0) > δr, so its volume is at
least δrA

n
. ¤

If K is sufficiently close to Bn
∞, then K is also close to any parallelepiped of minimal

volume containing K.

Lemma 3. Let K be a convex body satisfying

(1− δ)Bn
∞ ⊂ K ⊂ Bn

∞.

Then there exists a constant C and a linear operator T such that

(1− Cδ)Bn
∞ ⊂ T−1K ⊂ Bn

∞,

and ±ei ∈ T−1K.

Proof. Let as before P = TBn
∞ be a parallelepiped of minimal volume containing K.

Note that voln(P ) 6 2n. On the other hand, if x ∈ P \ (1 + κ)(1 − δ)Bn
∞, then, by

Lemma 2,

voln(P ) > 2n(1− δ)n + κ
2n−1

n
(1− δ)n.
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The right hand side is greater than 2n if κ > κ0 = 2n((1 − δ)−n − 1). Thus, P ⊂
(1+κ0)(1− δ)Bn

∞, and thereby (1−κ0)P ⊂ (1− δ)Bn
∞ ⊂ K. It remains to note that

κ0 6 4n2δ for sufficiently small δ > 0. ¤
Thus, replacing K by its suitable linear image we may assume everywhere below

that K ⊂ Bn
∞, ±ej ∈ ∂K, j = 1, . . . , n. Let δ > 0 be the minimal number such that

(1− δ)Bn
∞ ⊂ K.

4. Computation of the kernel of the differential of the volume
function

Choose some numbers ak > 0, k = 0, . . . , n− 1, and define the polytope Q0 as the
union of the simplices

SF = conv(0, a0cF0 , a1cF1 , . . . , an−1cFn−1),

where F = {F0, . . . , Fn−1} runs over all flags (F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fn−1, dimFj = j)
of faces of the unit cube.

Choose now some points xF close to x0
F = adimF cF and consider the polytope Q

defined in the same way using the points xF . Consider the function g({xF}F∈F) =
voln(Q). It is just a polynomial of degree n of the coordinates of xF , so it is infinitely
smooth.

Lemma 4. If ∆xF ∈ Rn, ∆xF ⊥ cF for all F , then {∆xF} ∈ KerD{x0
F }g, where

DXg is the differential of g at the point X.

Proof. Since the kernel of the differential is a linear space, it suffices to check this for
the vectors {∆xF} in which only one ∆xF̃ 6= 0. Due to symmetry, we may assume
that cF̃ = (1, . . . , 1︸ ︷︷ ︸

k

, 0, . . . , 0︸ ︷︷ ︸
n−k

). The space orthogonal to cF̃ is then generated by the

vectors ej, j > k and ei − ej, 1 6 i < j 6 k. Note now that the polytopes Q+

and Q− built on the points x0
F , F 6= F̃ , and x0

F̃
± hej, where j > k, are symmetric

with respect to the symmetry ej → −ej, so their volumes are the same. On the other
hand, the difference of their volumes in the first order is 2hD{x0

F }g({0, . . . , ej, . . . , 0}),
where ej stands in the position corresponding to F̃ ∈ F . Thus,

D{x0
F }g({0, . . . , ej, . . . , 0}) = 0.

To prove the equality D{x0
F }g({0, . . . , ei − ej, . . . , 0}) = 0, consider Q′ and Q′′ built

using the points xF = x0
F , F 6= F̃ and xF̃ = x0

F̃
+ hei or xF̃ = x0

F̃
+ hej respectively.

They are also symmetric with respect to the symmetry ei ↔ ej and the difference of
their volumes in the first order equals hD{x0

F }g({0, . . . , ei − ej, . . . , 0}). ¤
Below we shall also need the following elementary observation from real analysis.

Lemma 5. Let g(X) be a smooth function on RN and X0 ∈ RN . There exists a
constant Const depending on g and X0 such that for all sufficiently small δ > 0 and
all X1, X2 ∈ RN satisfying

‖X1 −X0‖, ‖X2 −X0‖ 6 δ and X1 −X2 ∈ KerDX0g,



MAHLER CONJECTURE: LOCAL MINIMALITY OF THE UNIT CUBE 5

one has |g(X1)− g(X2)| 6 Const δ2.

Proof. Using the Taylor formula, we get

g(Xj) = g(X0) + (DX0g) (Xj −X0) + O(δ2), where j = 1, 2.

Subtracting these two identities, we obtain

g(X1)− g(X2) = (DX0g) (X1 −X2) + O(δ2) = O(δ2),

because (DX0g) (X1 −X2) = 0. ¤
Let P ⊂ Rn be a convex polytope. For a face F of P , we define its dual face F ∗ of

P ∗ by F ∗ = {y ∈ P ∗ : x · y = 1 for all x ∈ F} (see Chapter 3.4 in [Gr]).

Lemma 6. Let P be a convex polytope such that 0 is in the interior of P . Let P ∗ be
its dual polytope. Choose some pair of dual faces F and F ∗ of P and P ∗ respectively
and some points x ∈ F , x∗ ∈ F ∗ in the relative interiors of F and F ∗. Assume that
K is a convex body satisfying (1− δ)P ⊂ K ⊂ P . Then there exists a pair of points
y ∈ ∂K and y∗ ∈ ∂K∗ such that y · y∗ = 1 and ‖y−x‖, ‖y∗−x∗‖ 6 Cδ, where C > 0
does not depend on K or δ, but may depend on P, P ∗, F, F ∗, x and x∗.

Proof. Since x ·x∗ = 1 > 0, there exists a self-adjoint positive definite linear operator
A such that Ax = x∗. This operator can be chosen as follows: Let L be a 2-
dimensional plane through the origin containing both x and x∗. A will act identically
on L⊥. To define its action on L, choose an orthogonal basis e1, e2 in L such that
e1 = x and put

A
∣∣
L

=

(
a b
b a′

)
,

where x∗ = ae1 + be2 and a′ > 0 is chosen so large that aa′ > b2.
We will use below the following simple orthogonality relations:

(1) x ⊥ l(F ∗).
(2) x∗ ⊥ l(F ).
(3) l(F ) ⊥ l(F ∗).
(4) [A−1l(F ∗)]⊥ = span [x∗, Al(F )] and [Al(F )]⊥ = span [x,A−1l(F ∗)].
(5) (x∗)⊥ ∩ span(x,A−1l(F ∗)) = A−1l(F ∗).

(1), (2) and (3) follow directly from the definition of F ∗ (see Chapter 3.4 in [Gr]).
Let us first prove (4). Since l(F ) ⊥ l(F ∗) and A is self-adjoint, we also have
Al(F ) ⊥ A−1l(F ∗). Also, since x ⊥ l(F ∗), we have x∗ = Ax ⊥ A−1l(F ∗). Thus

span(x∗, Al(F )) ⊂ [A−1l(F ∗)]⊥. On the other hand, x 6∈ l(F ), so x∗ = Ax 6∈ Al(F )
and

dim (span(x∗, Al(F ))) = 1 + dimF = n− dimF ∗ = n− dimA−1l(F ∗),

so A−1l(F ∗)⊥ can not be wider than span(x∗, Al(F )). Similarly,

[Al(F )]⊥ = span
[
x, A−1l(F ∗)

]
.

To prove (5), we first note that A−1l(F ∗) ⊥ x∗ (see (4)). Since x∗ · x = 1 6= 0,
(x∗)⊥ ∩ span(x,A−1l(F ∗)) is a subspace of codimension 1 in span(x,A−1l(F ∗)), so it
cannot be wider than A−1l(F ∗).
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Let K̃ = K ∩ span(x,A−1l(F ∗)) and let y ∈ K̃ maximize y · x∗. Then y ∈
∂K and a tangent plane to K at y contains an affine plane parallel to (x∗)⊥ ∩
span(x,A−1l(F ∗)) = A−1l(F ∗). Therefore, there exists y∗ ∈ ∂K∗ ∩ [A−1l(F ∗)]⊥ =
∂K∗ ∩ span(x∗, Al(F )) such that y · y∗ = 1.

Now let y = αx + h and y∗ = α∗x∗ + h∗, where h ∈ A−1l(F ∗) and h∗ ∈ Al(F ).
Note that y · x∗ = α, so by maximality of y,

α = (y, x∗) > (0, x∗) = 0.

Also y · y∗ = αα∗ = 1, so α∗ > 0. Let ρ > 0 be such that B(x, ρ) ∩ af(F ) ⊂ F and
B(x∗, ρ) ∩ af(F ∗) ⊂ F ∗ where B(z, t) is the Euclidean ball of radius t centered at z.
Since y ∈ ∂K and

K∗ ⊃ P ∗ ⊃ F ∗ 3 x∗ +
ρAh

‖Ah‖ ,

we have

1 > y ·
(

x∗ +
ρAh

‖Ah‖
)

= α +
ρAh · h
‖Ah‖ > α + ρ′‖h‖, where ρ′ =

ρ

‖A‖‖A−1‖ .

Since y∗ ∈ ∂K∗ and

K ⊃ (1− δ)P ⊃ (1− δ)F 3 (1− δ)

[
x +

ρA−1h∗

‖A−1h∗‖
]

,

we have (
(1− δ)

[
x +

ρA−1h∗

‖A−1h∗‖
])

· y∗ 6 1

and

(1− δ)−1 >
[
x +

ρA−1h∗

‖A−1h∗‖
]
· y∗ = α∗ +

ρA−1h∗ · h∗
‖A−1h∗‖ > α∗ + ρ′‖h∗‖.

Thus α 6 1 and α∗ 6 1/(1− δ), which, together with αα∗ = 1, gives α > 1− δ and
α∗ > 1. Hence ρ′‖h‖ 6 δ, ρ′‖h∗‖ 6 1

1−δ
−1 and, thereby, ‖y−x‖, ‖y∗−x∗‖ 6 Cδ. ¤

Remark: Below (in Section 5) we will need Lemma 6 only for the case when x and
x∗ are collinear. In this case we can choose A to be a pure homothety and get the
points y = αx + h and y∗ = α∗x∗ + h∗, with h ∈ l(F ∗) and h∗ ∈ l(F ).

Now define c∗F = 1
n−dimF

cF . Choose positive numbers αF and α∗F satisfying αF α∗F =
1 and put yF = αF cF , y∗F = α∗F c∗F .

Let Q = ∪FSF(Q) and Q′ = ∪FSF(Q′), where

SF(Q) = conv(0, yF0 , yF1 , . . . , yFn−1) and SF(Q
′) = conv(0, y∗F0

, y∗F1
, . . . , y∗Fn−1

)

and F runs over all flags F = {F0, . . . , Fn−1} of faces of Bn
∞.

Lemma 7.

voln(Q)voln(Q′) > P(Bn
∞).
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Proof. For every flag F = {F0, . . . , Fn−1},

voln(SF(Q)) = voln(SF(B
n
∞))

n−1∏
j=0

αFj
, where SF(B

n
∞) = conv(0, cF0 , cF1 , . . . , cFn−1),

and

voln(SF(Q
′)) = voln(SF(B

n
1 ))

n−1∏
j=0

α∗Fj
, where SF(B

n
1 ) = conv(0, c∗F0

, c∗F1
, . . . , c∗Fn−1

).

Hence,
voln(SF(Q))voln(SF(Q

′)) = voln(SF(B
n
∞))voln(SF(B

n
1 )).

The factors on the right hand side do not depend on the flag F. Thus,

voln(Q)voln(Q′) =
∑

F
voln(SF(Q))

∑

F
voln(SF(Q

′))

>
(∑

F

√
voln(SF(Q))voln(SF(Q′))

)2

=

(∑

F

√
voln(SF(Bn∞))voln(SF(Bn

1 ))

)2

=
∑

F
voln(SF(B

n
∞))

∑

F
voln(SF(B

n
1 )) = voln(Bn

∞)voln(Bn
1 ) = P(Bn

∞).

¤

5. Lower stationarity of Bn
∞

Now apply Lemma 6 to Bn
∞ and Bn

1 and the points cF ∈ F and c∗F = 1
n−dimF

cF ∈
F ∗, where F ∗ is the face of Bn

1 dual to F . Since cF and c∗F are collinear, we get points

xF = αF cF + hF ∈ ∂K and x∗F = α∗F c∗F + h∗F ∈ ∂K∗,

where αF α∗F = 1, hF ∈ l(F ∗), h∗F ∈ l(F ) and |αF − 1|, |α∗F − 1|, ‖hF‖, ‖h∗F‖ 6 Cδ.
Since ±ej ∈ ∂K and ±ej ∈ ∂K∗, we can choose xF = yF = x∗F = y∗F = cF = c∗F

when dimF = n− 1.
Put yF = αF cF and y∗F = α∗F c∗F , and consider the polytopes

P = ∪Fconv(0, xF0 , . . . , xFn−1) and P ′ = ∪Fconv(0, x∗F0
, . . . , x∗Fn−1

),

Q = ∪Fconv(0, yF0 , . . . , yFn−1) and Q′ = ∪Fconv(0, y∗F0
, . . . , y∗Fn−1

).

Note that xF − yF = hF , x∗F − y∗F = h∗F and hF , h∗F ⊥ cF .
Thus by Lemmata 4, 5.

|voln(P )− voln(Q)| 6 Cδ2 and |voln(P ′)− voln(Q′)| 6 Cδ2,

whence
voln(P )voln(P ′) > voln(Q)voln(Q′)− Cδ2 > P(Bn

∞)− Cδ2,

where the last inequality follows from Lemma 7.
Since K ⊃ P and K∗ ⊃ P ′, it remains to show that for some c > 0, either

K 6⊂ (1+cδ)P , or K∗ 6⊂ (1+cδ)P ′. Then, by Lemma 2, either voln(K) > voln(P )+c′δ,
or voln(K∗) > voln(P ′) + c′δ. This yields

P(K) > P(Bn
∞) + c′′δ − Cδ2 > P(Bn

∞),
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provided that δ > 0 is small enough.

6. The conclusion of the proof

Note that at least one of the coordinates of one of the xF̃ with dimF̃ = 0 is at
most 1− δ. Indeed, assume that all coordinates are greater than (1− δ′) in absolute
value with some δ′ < δ. Define D = conv{xF : F ∈ F , dimF = 0} ⊂ K. Let z ∈ D∗.
Choose F so that (xF )jzj > 0 for all j = 1, . . . , n. Then

1 > xF · z > (1− δ′)
∑

j

|zj|.

Thus, D∗ ⊂ (1− δ′)−1Bn
1 and D ⊃ (1− δ′)Bn

∞, contradicting the minimality of δ.

Due to symmetry, we may assume without loss of generality that F̃ = {(1, . . . , 1)}
and that (xF̃ )1 6 1 − δ. Assume that K ⊂ (1 + cδ)P . Consider the point x̃ =
(1−δ, c′δ, . . . , c′δ), where c′ = 1/(n− 5

4
). Then x̃ ∈ (1−c′′δ)P ∗, where c′′ = 1/(4n−5).

Indeed, it is enough to check that x̃ · xF 6 1 − c′′δ for all vertices xF of P . If
F 6= {(1, . . . , 1)}, then all coordinates of xF do not exceed 1 and at least one does
not exceed 1/2. Thus, if δ is small enough, we get

x̃ · xF 6 (1− δ) + (n− 2)c′δ +
c′δ
2

= 1− δ + (n− 3
2
)c′δ = 1− c′′δ.

If F = {(1, . . . , 1)}, then

x̃ · xF 6 (1− δ)2 + (n− 1)c′δ = 1− 2δ +
n− 1

n− 5
4

δ + δ2 6 1− 2δ +
4

3
δ + δ2 6 1− c′′δ,

provided that δ > 0 is small enough. Therefore if c < c′′, we get x̃ ∈ 1
1+cδ

P ∗ ⊂ K∗.
Now note that for every x ∈ P ′, we have

|x1|+ (1− C ′δ)
∑
j>2

|xj| 6 1,

provided C ′ is chosen large enough. Indeed, again it is enough to check this for the
vertices x∗F of P ′. If cF 6= (±1, 0, . . . , 0) we have

∑
j>2

|(x∗F )j| > 1/3, so

|(x∗F )1|+ (1− C ′δ)
∑
j>2

|(x∗F )j| 6
∑
j>1

|(x∗F )j| − C ′δ
∑
j>2

|(x∗F )j| 6 1 + nCδ − C ′δ
3

6 1,

provided that C ′ > 3nC, where C is the constant such that ‖x∗F − c∗F‖ 6 Cδ. If
cF = (±1, 0 . . . , 0), then xF = ±e1 and the inequality is trivial.

Now it remains to note that

|x̃1|+(1−C ′δ)
∑
j>2

|x̃j| = 1−δ+(1−C ′δ)(n−1)c′δ = 1+c′′δ−C ′(n−1)c′δ2 > 1+cδ,

provided that c < c′′/2 and δ is small enough, whence x̃ 6∈ (1 + cδ)P ′.



MAHLER CONJECTURE: LOCAL MINIMALITY OF THE UNIT CUBE 9

References

[BM] J. Bourgain, V. D. Milman, New volume ratio properties for convex symmetric bodies in
Rn. Invent. Math. 88, no. 2 (1987), 319–340.

[Gr] B. Grunbaum, Convex Polytopes. Graduate Texts in mathematics, 221, Springer, 2003.
[GMR] Y. Gordon, M. Meyer and S. Reisner, Zonoids with minimal volume–product - a new

proof. Proceedings of the American Math. Soc. 104 (1988), 273–276.
[Ku] G. Kuperberg, From the Mahler Conjecture to Gauss Linking Integrals. Geometric And

Functional Analysis, 18/ 3, (2008), 870-892.
[Ma] K. Mahler, Ein Ubertragungsprinzip fur konvexe Korper. Casopis Pyest. Mat. Fys. 68,

(1939), 93–102.
[Me1] M. Meyer, Une caracterisation volumique de certains espaces normes de dimension finie.

Israel J. Math. 55 (1986), no. 3, 317–326.
[Me2] M. Meyer, Convex bodies with minimal volume product in R2. Monatsh. Math. 112 (1991),

297–301.
[MeP] M. Meyer and A. Pajor, On Santalo inequality. Geometric aspects of functional analysis

(1987–88), Lecture Notes in Math., 1376, Springer, Berlin, (1989), 261–263.
[Pe] C. M. Petty, Affine isoperimetric problems. Discrete geometry and convexity (New York,

1982), 113–127, Ann. New York Acad. Sci., 440, New York Acad. Sci., New York, 1985.
[Pi] G. Pisier, The volume of convex bodies and Banach space geometry. Cambridge Tracts in

Mathematics, 94. Cambridge University Press, Cambridge, 1989.
[R1] S. Reisner, Zonoids with minimal volume–product. Math. Zeitschrift 192 (1986), 339–346.
[R2] S. Reisner, Minimal volume product in Banach spaces with a 1-unconditional basis. J. London

Math. Soc. 36 (1987), 126–136.
[Sa] L. A. Santalo, An affine invariant for convex bodies of n-dimensional space. (Spanish) Por-

tugaliae Math. 8, (1949), 155–161.
[SR] J. Saint Raymond, Sur le volume des corps convexes sym etriques. Seminaire d’initiation ‘a

l’Analyse, 1980/1981, Publ. Math. Univ. Pierre et Marie Curie, Paris, 1981.

Department of Mathematics, University of Wisconsin, Madison 480 Lincoln Drive
Madison, WI 53706, USA

E-mail address: nazarov@math.wisc.edu

St. Petersburg Department of Steklov Institute of Mathematics, Fontanka 27,
St.Petersburg, 191023, Russia

E-mail address: fedyapetrov@gmail.com

Department of Mathematics, Kent State University, Kent, OH 44242, USA
E-mail address: ryabogin@math.kent.edu

Department of Mathematics, Kent State University, Kent, OH 44242, USA
E-mail address: zvavitch@math.kent.edu


