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Abstract. We prove that for every convex body K with the
center of mass at the origin and every ε ∈

(
0, 1

2

)
, there exists

a convex polytope P with at most eO(d)ε−
d−1
2 vertices such that

(1− ε)K ⊂ P ⊂ K.

1. Introduction and main result

A convex body in Rd is a compact convex set with non-empty interior.
Our goal is to prove the following theorem.

Theorem. Let K be a convex body in Rd with the center of mass at
the origin, and let ε ∈

(
0, 1

2

)
. Then there exists a convex polytope P

with at most eO(d)ε−
d−1
2 vertices such that (1− ε)K ⊂ P ⊂ K.

This result improves the 2012 theorem of Barvinok [B] by remov-
ing the symmetry assumption and the extraneous (log 1

ε
)d factor. Our

approach uses a mixture of geometric and probabilistic tools.
We refer the reader to the surveys of Bronshtein [Br] and Gruber

[Gr] for the discussion of the history of the problem. Unfortunately,
we will have to rely upon two non-trivial classical results (Blaschke-
Santaló inequality and its reverse), which makes this paper a bit less
reader-friendly than we would like it to be despite our best efforts to
provide well-written and easily accessible references for all statements
that we use without a proof.

2. Outline of the proof

Without loss of generality, we may assume thatK has smooth bound-
ary, in particular, K has a unique supporting hyperplane at each
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boundary point. Our task is to find a finite set of points Y ⊂ ∂K
such that P = conv Y satisfies (1− ε)K ⊂ P . By duality, this is equiv-
alent to the requirement that every cap S(x, ε) = {y ∈ ∂K : 〈y, νx〉 >
(1 − ε)〈x, νx〉}, where x ∈ ∂K and νx is the outer unit normal to ∂K
at x, contains at least one point of Y .

The key idea is to construct a probability measure µ on ∂K such

that for every x ∈ ∂K, ε ∈
(
0, 1

2

)
, we have µ(S(x, ε)) > pε

d−1
2 with

some p = eO(d) depending on d only.
Since there are infinitely many caps, our next aim is to choose an

appropriate finite net X ⊂ ∂K of cardinality C(d)ε−
d−1
2 such that the

condition S(x, ε
2
) ∩ Y 6= ∅ for all x ∈ X implies that S(x, ε) ∩ Y 6= ∅

for all x ∈ ∂K. Given such a net, we will be able to apply a general
combinatorial result essentially due to Rogers to construct the desired

set Y of cardinality approximately logC(d)p−1ε−
d−1
2 , which will be still

eO(d)ε−
d−1
2 as long as C(d) is at most double exponential in d.

A natural net to try is the Bronshtein–Ivanov net (see [BI]), which
allows one to approximate a point x ∈ ∂K and the corresponding
outer unit normal νx by a point in the net and its outer unit normal
simultaneously. Unfortunately, it works only for uniformly 2-convex
bodies, i.e., the bodies that can be touched by an outer sphere of fixed
controllable radius at every boundary point.

So, the last step will be to show that the task of approximating an
arbitrary convex body K can be reduced to that of approximating a
certain uniformly 2-convex body associated with K.

In the exposition, these steps are presented in reverse. We start with
constructing the associated uniformly 2-convex body (Sections 3, 4, 5).
Then we build the Bronshtein-Ivanov net X of appropriate mesh and
cardinality, and check that it is, indeed, enough to consider the caps
S(x, ε

2
), x ∈ X (Sections 6, 7, 8). Finally, we construct the probability

measure µ and finish the proof of the theorem (Sections 9, 10).

3. Standard position

Since the problem is invariant under linear transformations, we can
always assume that our body K is in some “standard position”. The
exact notion of the standard position to use is not very important as
long as it guarantees that B ⊂ K ⊂ d2B, say, where B is the unit ball
in Rd centered at the origin.

One possibility is to make a linear transformation such that John’s
ellipsoid (see [Ba], Lecture 3) of the centrally-symmetric convex body

L = K ∩ −K is the unit ball, so B ⊂ L ⊂
√
dB and, since K ⊃ −1

d
K

(see [BF], page 57), it follows that B ⊂ K ⊂ d
√
dB.



FINE APPROXIMATION OF CONVEX BODIES BY POLYTOPES 3

4. The function ϕδ and the mapping Φδ

Fix δ ∈
(
0, 1

2

)
. For r > 0, define ϕδ(r) as the positive root of the

equation ϕ+ δr2ϕ2 = 1. Put Φδ(x) = xϕδ(|x|), x ∈ Rd.

Lemma 1. The function ϕδ is a decreasing smooth function on [0,+∞);

r 7→ rϕδ(r) is an increasing function mapping [0,+∞) to [0, δ−
1
2 );

Φδ is a diffeomorphism of Rd onto the open ball δ−
1
2 intB; if ν is

a unit vector and h > 0, then the image Φδ(Hν,h) of the half-space

Hν,h = {x : 〈x, ν〉 6 h} is the intersection of δ−
1
2 intB and the ball of

radius
√

1
4δ2h2

+ 1
δ

centered at − 1
2δh
ν (see Figure 1).

Φδ

h

x

0

ν

δ−
1
2

Φδ(x)

x

0

ν

Figure 1. The mapping Φδ

Proof. The first statement is obvious. To show the second one, just
notice that rϕδ(r) is the positive root of ψ

r
+ δψ2 = 1 and, as r →∞,

this root increases to δ−
1
2 . The third claim follows from the observation

that the derivative of the mapping r 7→ rϕδ(r) is strictly positive and
continuous on [0,+∞). To prove the last claim, observe that if 〈x, ν〉 =
h, then
∣∣∣Φδ(x) +

1

2δh
ν
∣∣∣
2

=
∣∣∣xϕδ(|x|) +

1

2δh
ν
∣∣∣
2

=

|x|2ϕδ(|x|)2 +
ϕδ(|x|)
δ

+
1

4δ2h2
=

1

4δ2h2
+

1

δ
by the definition of ϕδ. �

It follows that for every convex body K containing the origin, Φδ(K)
is also convex. Since for every interval Ix = {rx : 0 6 r 6 1}, x ∈ Rd,
we have Φδ(Ix) ⊂ Ix, the image Φδ(K) is contained in K. Moreover, if
B ⊂ K, then Φδ(K) is the intersection of balls of radii not exceeding√

1
4δ2

+ 1
δ
6 1

δ
. In particular, for every boundary point x ∈ ∂Φδ(K),

we can find a ball of radius 1
δ

containing Φδ(K) whose boundary sphere
touches Φδ(K) at x.
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5. From the approximation of Φδ(K) to the approximation
of K

Lemma 2. Let ε ∈
(
0, 1

2

)
. Suppose that a convex body K satisfies

0 ∈ K ⊂ d2B and δ < 1
4d4

. If Y ∈ ∂K is a finite set such that(
1− ε

2

)
Φδ(K) ⊂ conv(Φδ(Y )), then (1− ε)K ⊂ conv(Y ).

Proof. Note that the conditions of the lemma imply that 0 ∈ conv(Φδ(Y )).
Since for every y ∈ Rd, Φδ(y) is a positive multiple of y, we conclude
that 0 ∈ P = conv(Y ) as well, so Φδ(P ) is convex. Suppose that there
exists x ∈ K such that (1− ε)x /∈ P . Then,

Φδ((1− ε)x) /∈ Φδ(P ) ⊃ conv(Φδ(Y )).

However,

Φδ((1− ε)x) = (1− ε)ϕδ((1− ε)|x|)
ϕδ(|x|)

Φδ(x).

Denoting ηt = ϕδ((1− t)|x|), t ∈ [0, 1], we have

ηε + δ(1− ε)2|x|2η2ε = η0 + δ|x|2η20 = 1.

Since δ|x|2η2ε > δ|x|2η20 and δε2|x|2η2ε > 0, it follows that

ηε(1− 2δε|x|2ηε) 6 η0, so
ηε
η0
6

1

1− 2δε|x|2ηε
.

Since ηε 6 1 and 2δ|x|2 6 2δd4 6 1
2
, we get

(1− ε)ηε
η0
6

1− ε
1− ε

2

6 1− ε

2
,

so
(
1− ε

2

)
Φδ(x) cannot be contained in conv(Φδ(Y )), which contra-

dicts our assumption. �

This lemma implies that an ε
2
-approximation of Φδ(K) yields an ε-

approximation of K. Note also that Φδ(K) is rather close to K. More
precisely, if 0 ∈ K ⊂ d2B, we have (1 − δd4)K ⊂ Φδ(K) ⊂ K. The
center of mass of Φδ(K) may no longer be at the origin, of course, but
the only non-trivial property of K we shall really use is the Santaló
bound vold(K)vold(K

◦) 6 eO(d)d−d, where

K◦ = {y ∈ Rn : 〈x, y〉 6 1 for all x ∈ K}
is the polar body of the convex body K. This bound holds for K
because 0, being the center of mass of K, is, thereby, the Santaló point
of K◦ (see Section 10 for details). For sufficiently small δ > 0, it
is inherited by Φδ(K) just because (Φδ(K))◦ ⊂ (1 − δd4)−1K◦ and,
thereby,

vold(Φδ(K))vold((Φδ(K))◦) 6 (1− δd4)−dvold(K)vold(K
◦).
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Choosing δ = 1
4d5

, we see that the body Φδ(K) also satisfies the Santaló
bound with only marginally worse constant. At last, if B ⊂ K, we have
1
2
B ⊂ (1− δ)B ⊂ Φδ(K).
Thus, replacing K by Φδ(K) (and ε by ε

2
) if necessary, from now

on we can restrict ourselves to the class KR of convex bodies K with
smooth boundary such that 1

2
B ⊂ K ⊂ d2B and for every boundary

point x ∈ ∂K, there exists a ball of fixed radius R = 4d5 containing K
whose boundary sphere touches K at x. Moreover, we can also assume
that vold(K)vold(K

◦) 6 eO(d)d−d.

6. The Bronshtein–Ivanov net

Let ρ ∈
(
0, 1

2

)
. Let K be a convex body with smooth boundary

containing the origin and contained in d2B. Consider the set S of
points {x + νx : x ∈ ∂K}, where νx is the outer unit normal to ∂K
at x. Let {xj + νxj : 1 6 j 6 N} be a maximal ρ-separated set in S,
i.e., a set such that any two of its members are at distance at least ρ
(see Figure 2). We will call the corresponding set {xj : 1 6 j 6 N} a
Bronshtein-Ivanov net of mesh ρ for the body K.

x

νx

Figure 2. The Bronshtein-Ivanov net

Lemma 3. We have N 6 2d(d2 + 3)dρ−d+1, and for every x ∈ ∂K, we
can find j such that |x− xj|2 + |νx − νxj |2 6 ρ2.

Proof. Let x′, x′′ ∈ ∂K and let ν ′ = νx′ , ν
′′ = νx′′ . Note that, by the

convexity of K, we must have 〈ν ′, x′−x′′〉 > 0, 〈ν ′′, x′′−x′〉 > 0. Hence,
we always have

|x′ + ν ′ − x′′ − ν ′′|2 =

|x′ − x′′|2 + |ν ′ − ν ′′|2 + 2(〈ν ′, x′ − x′′〉+ 〈ν ′′, x′′ − x′〉) >
|x′ − x′′|2 + |ν ′ − ν ′′|2,
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and the second conclusion of the lemma follows immediately from the
definition of xj.

Now assume that s′, s′′ > 0. Write

|x′ + ν ′ + s′ν ′ − x′′ − ν ′′ − s′′ν ′′|2 = |x′ + ν ′ − x′′ − ν ′′|2+
|s′ν ′ − s′′ν ′′|2 + 2s′〈ν ′, x′ − x′′〉+ 2s′′〈ν ′′, x′′ − x′〉+

2(s′ + s′′)(1− 〈ν ′, ν ′′〉) > |x′ + ν ′ − x′′ − ν ′′|2.
Thus, if the balls of radius ρ

2
centered at x′+ν ′ and x′′+ν ′′ are disjoint,

so are the balls of radius ρ
2

centered at x′+(1+s′)ν ′ and x′′+(1+s′′)ν ′′.
From here we conclude that the balls of radius ρ

2
centered at the points

xj +(1+kρ)νxj , 0 6 k 6 1
ρ

are all disjoint (see Figure 3) and contained

in (d2 + 3)B.

x′

x′′

ν ′

ν ′′

ρ
2

ρ
2

Figure 3. The disjoint balls

The total number of these balls is at least N
ρ

(for every point xj in the

net, there is a chain of at least 1
ρ

balls corresponding to different values

of k), whence N
ρ
6
(
d2+3
ρ
2

)d
and the desired bound for N follows. �

7. The distance bound

The following lemma shows that ε-caps of convex bodies K ∈ KR
have small diameters.

Lemma 4. Let ε ∈
(
0, 1

2

)
. Assume that K ∈ KR, x ∈ ∂K, and

ν is the outer normal to ∂K at x. If y ∈ S(x, ε), i.e., y ∈ K and

〈y, ν〉 > (1− ε)〈x, ν〉, then |y − x| 6
√

2Rd
√
ε.

Proof. Let Q be the ball of radius R containing K whose boundary
sphere touches K at x. Then y ∈ Q and ν is the outer unit normal to
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Q at x, so Q is centered at x−Rν. Note also that, since 0 ∈ K ⊂ d2B,
we have 0 6 〈x, ν〉 6 d2. Now we have

R2 > |y − x+Rν|2 = |y − x|2 + 2R〈y − x, ν〉+R2,

so
|y − x|2 6 2R〈x− y, ν〉 6 2Rε〈x, ν〉 6 2Rd2ε,

as required. �

8. Discretization

Lemma 5. Let ε, ρ ∈
(
0, 1

2

)
. Let K ∈ KR. Let x, x′, y ∈ ∂K and

let ν and ν ′ be the outer unit normals to ∂K at x and x′ respectively.
Assume that |x−x′|2 + |ν− ν ′|2 6 ρ2 and 〈y, ν〉 >

(
1− ε

2

)
〈x, ν〉. Then

〈y, ν ′〉 >
(

1− ε

2
− 2ρ(ρ+ εd2 + |y − x|)

)
〈x′, ν ′〉.

Proof. We have

〈y, ν ′〉 = 〈x, ν ′〉+ 〈y − x, ν ′〉 =

〈x′, ν ′〉+ 〈x− x′, ν ′〉+ 〈y − x, ν〉+ 〈y − x, ν ′ − ν〉 >
〈x′, ν ′〉+ 〈x− x′, ν ′ − ν〉+ 〈y − x, ν〉+ 〈y − x, ν ′ − ν〉 >

〈x′, ν ′〉 − ρ2 − ε

2
〈x, ν〉 − ρ|y − x|.

Here, when passing from the second line to the third one, we used the
inequality 〈x− x′, ν〉 > 0.

Note now that

〈x, ν〉 = 〈x, ν ′〉+ 〈x, ν − ν ′〉 6 〈x′, ν ′〉+ ρd2

and 〈x′, ν ′〉 > 1
2
, so

〈y, ν ′〉 >
(

1− ε

2

)
〈x′, ν ′〉 − ρ

(
ρ+

εd2

2
+ |y − x|

)
>

(
1− ε

2
− 2ρ(ρ+ εd2 + |y − x|)

)
〈x′, ν ′〉.

�

Recall that our task is to find a finite set of points Y ⊂ ∂K such that
(1 − ε)K ⊂ conv Y . This requirement is equivalent to the statement
that for every x ∈ ∂K, there exists y ∈ Y such that 〈y, ν〉 > (1 −
ε)〈x, ν〉, where ν is the outer unit normal to ∂K at x.

Lemma 5 implies that it would suffice to show the existence of y ∈ Y
satisfying a slightly stronger inequality 〈y, ν〉 >

(
1− ε

2

)
〈x, ν〉 for every

point x in the Bronshtein–Ivanov net only, provided that we can ensure
that 2ρ(ρ+ εd2 + |y − x|) 6 ε

2
.
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To this end, we apply Lemma 4, which shows that the inequality
〈y, ν〉 >

(
1− ε

2

)
〈x, ν〉 automatically implies the distance bound |y −

x| 6
√

2Rd
√

ε
2

= d
√
R
√
ε. Thus, if we choose ρ = 1

4(d2+1+d
√
R)

√
ε, we

will be in good shape.
By Lemma 3, the size N of the corresponding Bronshtein-Ivanov net

is at most 8d(d2 + 3)d(d2 + 1 + d
√
R)dε−

d−1
2 = C(d)ε−

d−1
2 , which has

the correct power of ε already. However, C(d) is superexponential in
d, which prevents us from just using the full Bronshtein–Ivanov net for
Y and forces us to work a bit harder.

9. Rogers’ trick

We now remind the reader a simple abstract construction essentially
due to Rogers [R].

Lemma 6. Let S = {S1, . . . , SN} be a family of measurable subsets of
a probability space (U, µ) such that for some ϑ > 0, we have µ(Si) > ϑ
for all i = 1, . . . , N . Then there exists a set Y of cardinality at most
dϑ−1 log(Nϑ)e+ ϑ−1 that intersects each Si.

Here dze stands for the least non-negative integer greater than or
equal to z.

Proof. First we choose M points randomly and independently accord-
ing to µ and obtain a random set Y0. For every fixed i ∈ {1, . . . , N},
we have

P{Y ∩ Si = ∅} 6 (1− ϑ)M 6 e−ϑM .

Hence, the expected number of sets Si ∈ S disjoint from Y0 is at most
Ne−ϑM . Choosing one additional point in each such set, we shall get
a set Y of cardinality Ne−ϑM + M intersecting all Si. Puting M =
dϑ−1 log(Nϑ)e, we get the desired bound. �

Now, let K ∈ KR. Suppose that we can construct a probability
measure µ on ∂K such that for every x ∈ ∂K and every ε > 0, we have

µ(S(x, ε)) > pε
d−1
2 with some p > 0.

We take the Bronshtein–Ivanov net X of K constructed in Section 6.
Its cardinality N does not exceed C(d)ε−

d−1
2 , where C(d) is of order

eO(d log d). Consider the caps S(x, ε
2
), x ∈ X. By Lemma 6, there exists

a set Y ⊂ ∂K of cardinality at most d2 d−1
2 p−1ε−

d−1
2 log(C(d)2−

d−1
2 p)e+

2
d−1
2 p−1ε−

d−1
2 that intersects each of those caps. If p = eO(d), then the

cardinality of Y is of order eO(d)ε−
d−1
2 .
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10. The construction of the measure

Let n be a positive integer (we shall need both n = d and n = d−1).
Recall that for a convex body K ⊂ Rn containing the origin in its
interior, its polar body K◦ ⊂ Rn is defined by

K◦ = {y ∈ Rn : 〈x, y〉 6 1 for all x ∈ K}.

We shall need the following well-known (but, in part, highly non-trivial)
facts about the polar bodies:
Fact 1. If K has a smooth boundary and is strictly convex, that is, K
contains no line segment on its boundary, then the relation 〈x, x∗〉 = 1,
x ∈ ∂K, x∗ ∈ ∂K◦, defines a continuous one to one mapping ∗ from
∂K to ∂K◦. The vector x∗ is just ν

〈x,ν〉 , where ν is the outer unit normal

to ∂K at x (see [Sch], Corollary 1.7.3, page 40).
Fact 2. For any convex body K ⊂ Rn containing the origin in its
interior, we have voln(K)voln(K◦) > eO(n)n−n (see [BM], [K], [NAZ]).
Fact 3. If K is a convex body with the center of mass at the origin,
then

voln(K) voln(K◦) 6 eO(n)n−n

(see [MP]).

Lemma 7. Let K ⊂ Rd be a convex body containing the origin in its
interior and satisfying the Santaló bound vold(K) vold(K

◦) 6 eO(d)d−d.
For any Borel set S ⊂ ∂K, define S∗ = {x∗ ∈ ∂K◦ : x ∈ S}. Consider
the “cones” C(S) = {rx : x ∈ S, 0 6 r 6 1} and C(S∗) = {ry : y ∈
S∗, 0 6 r 6 1} and put

µ(S) =
1

2

(vold(C(S))

vold(K)
+

vold(C(S∗))

vold(K◦)

)
.

Then µ is a probability measure on ∂K invariant under linear auto-

morphisms of Rd and µ(S(x, ε)) > eO(d)ε
d−1
2 for all x ∈ ∂K and all

ε ∈ (0, 1
2
).

Proof. The invariance of µ under linear automorphisms of Rd follows
immediately from the general properties of the volume with respect to
linear transformations and the relation (TK)◦ = (T−1)∗K◦.

Apply an appropriate linear transformation to put the body K in
such a position that x = x∗ = e = (0, . . . , 0, 1) ∈ Rd. Then S = S(x, ε)
is given by 〈x, e〉 > 1 − ε. Let Q ⊂ e⊥ ∼= Rd−1 be the convex body
such that (1 − ε)e + Q is the cross-section of K by the hyperplane

{x : 〈x, e〉 = 1− ε}. Let K̃ = K ∩ {x : 〈x, e〉 6 1− ε}.
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K̃

K

S = S(x, ε) e = (0, . . . , 0, 1)

Q

0

ε

1− ε

(K̃)◦

K◦

e

εQ′

0

ε

Figure 4. The regions K \ K̃ and (K̃)◦ \K◦

Our first goal will be to show that

vold(K \ K̃) vold((K̃)◦ \K◦) > 1

d2
εd+1 vold−1(Q) vold−1(Q

′),

where Q′ ⊂ e⊥ is the polar body to Q in Rd−1.

To this end, note that K \ K̃ contains the interior of the pyramid
conv({e} ∪ (1− ε)e+Q) of height ε with the base (1− ε)e+Q, so

vold(K \ K̃) >
1

d
ε vold−1(Q).

We claim now that the interior of the pyramid Π = conv{(1+ε)e, e+

εQ′} is contained in (K̃)◦ \K◦ (see Figure 4). Since K◦ ⊂ {y : 〈y, e〉 6
1}, and int Π ⊂ {y : 〈y, e〉 > 1}, it suffices to show that Π ⊂ (K̃)◦.

To this end, take x ∈ K̃, and let 〈x, e〉 = 1 − tε, t > 1, so x =
(1− tε)e+ x′, where x′ ∈ e⊥.

K

S = S(x, ε)
e

(1− ε)e+Q

0

ε

(1− tε)e+ tQ

x = (1− tε)e+ x′

Q

Figure 5. The cross-section of K by the hyperplane
{x : 〈x, e〉 = 1− tε} is contained in tQ
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Since e ∈ K, by the convexity of K, x′ ∈ tQ (see Figure 5). Now,

〈x, (1+ε)e〉 = (1−tε)(1+ε) ≤ 1, hence, (1+ε)e ∈ (K̃)◦. Let y = e+εy′

with y′ ∈ Q′. Then 〈x, y〉 = 1− tε+ ε〈x′, y′〉 ≤ 1− tε+ tε = 1. Thus,

e + εQ′ ⊂ (K̃)◦. It follows by the convexity of (K̃)◦ that Π ⊂ (K̃)◦,
and, therefore,

vold((K̃)◦ \K◦) > vold(Π) =
1

d
εd vold−1(Q

′).

Multiplying these two estimates, we get the desired inequality.

On the other hand, we have int(K \ K̃) ⊂ C(S) \ (1 − ε)C(S), and

int((K̃)◦ \K◦) ⊂ (1− ε)−1C(S∗) \ C(S∗). Hence,

vold(K \ K̃) vold((K̃)◦ \K◦) 6
(1− (1− ε)d)((1− ε)−d − 1) vold(C(S)) vold(C(S∗)) 6

eO(d)ε2 vold(C(S)) vold(C(S∗)).

Combining it with the previous estimate and using Fact 2, we get

vold(C(S)) vold(C(S∗)) > eO(d)εd−1 vold−1(Q) vold−1(Q
′) >

eO(d)εd−1(d− 1)−(d−1).

Finally, since vold(K)vold(K
◦) 6 eO(d)d−d, we get

µ(S) >
1

2

(vold(C(S))

vold(K)
+

vold(C(S∗))

vold(K◦)

)
>

√
vold(C(S)) vold(C(S∗))

vold(K)vold(K◦)
> eO(d)ε

d−1
2 ,

as required. �

This lemma, together with the discussion in Section 9, completes the
proof of the theorem.
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