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Abstract. We show that in all dimensions d ≥ 3, there exists an asymmetric
convex body of revolution all of whose maximal hyperplane sections have the
same volume. This gives the negative answer to the question posed by V. Klee
in 1969.

1. Introduction

As usual, a convex body K ⊂ Rd is a compact convex subset of Rd with non-
empty interior. We assume that the origin is contained in the interior of K. We
consider the maximal section function MK :

MK(u) = max
t∈R

vold−1(K ∩ (u⊥ + tu)), u ∈ Sd−1.

Here u⊥ stands for the hyperplane passing through the origin and orthogonal to
the unit vector u, K∩(u⊥+tu) is the section of K by the affine hyperplane u⊥+tu.
It is well known, [Ga], that for origin-symmetric convex bodies the maximal sections
are central (i.e., correspond to t = 0), and the condition

MK1(u) = MK2(u) ∀u ∈ Sd−1

implies K1 = K2.
It is also well known, [BF], that on the plane there are convex bodies K that are

not Euclidean discs, but nevertheless satisfy MK(u) = 1 for all u ∈ S1. These are
the bodies of constant width 1.

In 1969 V. Klee asked whether the condition MK1 ≡ MK2 implies that K1 and
K2 are essentially the same (i.e., differ by translation and/or reflection about the
origin) in general, or, at least, whether the condition MK ≡ c implies that K is a
Euclidean ball, [Kl].

Recently, R. Gardner and V. Yaskin, together with the second and the third
named authors gave the negative answer to the first question of V. Klee by con-
structing two bodies of revolution K1, K2 such that K1 is origin-symmetric, K2

is not origin-symmetric, but MK1 ≡ MK2 (see [GRYZ]). In [NRZ] this result was
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strengthened for all even dimensions. It was shown that there exist two essen-
tially different convex bodies of revolution K1, K2 ⊂ Rd such that AK1 ≡ AK2 ,
MK1 ≡MK2 , and PK1 ≡ PK2 , where, for u ∈ Sd−1,

AK(u) = vold−1(K ∩ u⊥), PK(u) = vold−1(K|u⊥),

and K|u⊥ is the projection of K to u⊥.
In this paper we answer the second question of V. Klee. Our main result is the

following

Theorem 1. If d ≥ 3, there exists a convex body of revolution K ⊂ Rd satisfying
MK ≡ const that is not a Euclidean ball.

Remark 1. An alternative proof in the case d = 4 has been given in [NRZ]. Un-
fortunately, the elementary techniques used there fail for other dimensions.

Our bodies will be small perturbations of the Euclidean ball. The proofs of Theo-
rem 1 for even and odd d are different. For even d we can get away with elementary
algebra and control finitely many moments of f to obtain a local perturbation of
the ball. The case d ≥ 3, d is odd, is much more involved. To control the pertur-
bation, we use the properties of the Spherical Radon Transform, together with the
Borsuk-Ulam Theorem asserting that any continuous map from Sm to Rm, taking
antipodal points to antipodal points, contains zero in its image. The reader can
find all necessary information in [He] and [Mat].

The paper is organized as follows. In Section 2 we reduce the problem to finding
a non-trivial solution to two integral equations. In Section 3 we prove Theorem 1
for even d. Section 4 is devoted to the most difficult part of the proof when d odd.
The Appendix contains technical parts of the proofs and some auxiliary statements.

2. Reduction to a system of integral equations

From now on, we assume that d ≥ 3. We will be dealing with convex bodies of
revolution

Kf = {x ∈ Rd : x1 ∈ [−λ, µ], x22 + x23 + ...+ x2d ≤ f 2(x1)},
obtained by the rotation of a smooth (except for the endpoints) strictly concave
function f : [−λ, µ] → [0,∞) about the x1-axis, where λ and µ are some positive
real numbers.

Note that K is rotation invariant, thus every its hyperplane section is equivalent
to a section by a hyperplane with normal vector in the second quadrant of the
(x1, x2)-plane.
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Lemma 1. Let L(ξ) = L(s, h, ξ) = sξ+h be a linear function with slope s, and let
H(L) = {x ∈ Rd : x2 = L(x1)} be the corresponding hyperplane. Then the section
K ∩H(L) is of maximal volume if and only if

(1)

y∫
−x

(f 2 − L2)(d−4)/2L = 0,

where −x and y are the first coordinates of the points at which L intersects the
graphs of −f and f respectively (see Figure 1).

x1

x2

(y, f(y))

(−x,−f(−x))

−x y
h(s)

L

f

−f

Figure 1. Sections of K and H(L) by the (x1, x2)-plane.

Proof. Fix s > 0. Observe that the slice K ∩ H(L) ∩ Hξ of K ∩ H(L) by the
hyperplane Hξ = {x ∈ Rd : x1 = ξ}, −x(s) < ξ < y(s), is the (d − 2)-
dimensional Euclidean ball {(ξ, L(ξ), x3, x4, ..., xd) : x23 + ... + x2d ≤ r2} of radius
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r =
√
f 2(ξ)− L2(ξ). Hence,

(2) vold−1(K ∩H(L)) = vd−2
√

1 + s2

y(s)∫
−x(s)

(f 2(ξ)− L2(ξ))(d−2)/2dξ,

where vd−2 is the volume of the unit ball in Rd−2.
The section K ∩H(L) is of maximal volume if and only if

d

dh
vold−1(K ∩H(L)) = 0,

where in the only if part we use the Theorem of Brunn, [Ga]. Computing the
derivative, we conclude that for a given s ∈ R, the section K ∩H(L) is of maximal
volume if and only if (1) holds. �

Lemma 2. Let L(s, ξ) = sξ + h(s) be a family of linear functions parameterized
by the slope s. For each L in our family, define the hyperplane H(L) by H(L) =
{x ∈ Rd : x2 = L(x1)} (see Figure 1). The corresponding family of sections is of
constant (d− 1)-dimensional volume if and only if

(3)

y∫
−x

(f 2 − L2)(d−2)/2 =
const√
1 + s2

for all s > 0.

In the case of the unit Euclidean ball, the constant is equal to vd−1

vd−2
.

Proof. The right hand side in (2) is constant if and only if (3) holds. �

In what follows we will choose the perturbation function h that is infinitely
smooth, not identically zero, supported on [1 − 2δ, 1 − δ] for some small δ > 0,
and is small together with sufficiently many derivatives. The convex body corre-
sponding to any such function will be automatically asymmetric since not all its
maximal sections will pass through a single point.

3. The case of even d

Note that in this case p = d−2
2
∈ N. Then (3) and (1) take the form

(4)

y∫
−x

(f 2 − L2)p =

yo∫
−xo

(f 2
o − L2

o)
p =

const√
1 + s2

,

(5)

y∫
−x

(f 2 − L2)p−1L = 0,

where fo(ξ) =
√

1− ξ2, Lo(s, ξ) = sξ, and yo(s) = xo(s) = 1/
√

1 + s2.
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Our body of revolution Kf will be constructed as a local perturbation of the
Euclidean ball (see Figure 2).
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Figure 2. Graph of f (the case of an even dimension).
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The equations

(6) f(y(σ)) = L(σ, y(σ)), f(−x(σ)) = L(σ,−x(σ))

show that to define f , it is enough to define two decreasing functions x(σ) and y(σ)
on [0,+∞) (see Figure 3).
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1
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e
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op
e
=
σ

−x(σ)
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0 1 − 2δ 1 − δ

h(s)

Figure 3. The functions x(σ) and y(σ).

For the unperturbed case of the unit ball, h ≡ 0 and these functions are just

yo(s) = xo(s) = 1/
√

1 + s2. Our new functions x(σ) and y(σ) will coincide with xo

and yo for all σ /∈ [1 − 2δ, 1 − δ]. Since the curvature of the semicircle is strictly

positive, the resulting function f will be strictly concave if x and y are close to xo

and yo in C2.
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We shall make our construction in several steps. First, we define x = xo, y = yo

on [1,∞). Second, we will transfrom equations (4), (5) to obtain equations (9),

(10) written purely in terms of x and y (see below). Then we will use these new

equations to extend the functions x and y to [1− 3δ, 1]. Due to the existence and

uniqueness lemma and the remark after it (Lemma 8 and Remark 2 in Appendix),

we will be able to do it if δ and h are sufficiently small, and, moreover, the extensions

will coincide with xo and yo on [1 − δ, 1] and will be close to xo and yo with two

derivatives on [1− 3δ, 1− δ]. Then, we will show that a little miracle happens and

our extensions automatically coincide with xo and yo on [1 − 3δ, 1 − 2δ] as well.

This will allow us to put x = xo, y = yo on the remaining interval [0, 1 − 3δ] and

get a nice smooth function (see Figure 2). At last, we will show that equations (4),

(5) will hold up to s = 0, thus finishing the proof.

Step 1. We put x = xo, y = yo on [1,∞).

Step 2. To construct x, y on [1−3δ, 1], we will make some technical preparations.

First, we will differentiate equations (4), (5) a few times to obtain a system of four

integral equations with four unknown functions x, y, x′, y′. Next, we will apply

Lemma 8 and Remark 2 to show that there exists a solution x, y, x′, y′ of the

constructed system of integral equations on [1− 3δ, 1], which coincides with xo, yo,
dxo
ds

, dyo
ds

on [1 − δ, 1]. Finally, we will prove that the x and y components of that

solution give a solution of (4), (5) with f defined by (6).

Differentiating equation (4) p+ 1 times and equation (5) p times, we obtain

(−2)pp!
[((

L
∂L

∂s

)∣∣∣
(s,−x(s))

)pdx
ds

(s) +
((
L
∂L

∂s

)∣∣∣
(s,y(s))

)pdy
ds

(s)
]

+

(7)

y(s)∫
−x(s)

( ∂
∂s

)p+1(
(f 2(ξ)− L2(s, ξ))p

)
dξ =

( d
ds

)p+1( const√
1 + s2

)
,

and

(−2)p−1(p− 1)!
[((

L
∂L

∂s

)p−1
L
)∣∣∣

(s,−x(s))

dx

ds
(s) +

((
L
∂L

∂s

)p−1
L
)∣∣∣

(s,y(s))

dy

ds
(s)
]

+

(8)

y(s)∫
−x(s)

( ∂
∂s

)p(
(f 2(ξ)− L2(s, ξ))p−1L(s, ξ)

)
dξ = 0.
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When s ≤ 1, the integral term I in (7) can be split as

I =

y(s)∫
−x(s)

( ∂
∂s

)p+1(
(f 2(ξ)− L2(s, ξ))p

)
dξ =

( −xo(1)∫
−x(s)

+

y(s)∫
yo(1)

)( ∂
∂s

)p+1(
(f 2(ξ)− L2(s, ξ))p

)
dξ + Ξ1(s),

where

Ξ1(s) =

yo(1)∫
−xo(1)

( ∂
∂s

)p+1(
(f 2
o (ξ)− L2(s, ξ))p

)
dξ.

Making the change of variables ξ = −x(σ) in the integral
∫ −xo(1)
−x(s) , and ξ = y(σ) in

the integral
∫ y(s)
yo(1)

, we obtain

I = −
1∫
s

( ∂
∂s

)p+1(
L2(σ,−x(σ))− L2(s,−x(σ))

)p dx
ds

(σ)dσ−

1∫
s

( ∂
∂s

)p+1(
L2(σ, y(σ))− L2(s, y(σ))

)p dy
ds

(σ)dσ + Ξ1(s).

Similarly, we have

y(s)∫
−x(s)

( ∂
∂s

)p(
(f 2(ξ)− L2(s, ξ))pL(s, ξ)

)
dξ =

−
1∫
s

( ∂
∂s

)p((
L2(σ,−x(σ))− L2(s,−x(σ))

)p−1
L(s,−x(σ))

) dx
ds

(σ)dσ−

1∫
s

( ∂
∂s

)p((
L2(σ, y(σ))− L2(s, y(σ))

)p−1
L(s, y(σ))

) dy
ds

(σ)dσ + Ξ2(s),

where

Ξ2(s) =

yo(1)∫
−xo(1)

( ∂
∂s

)p(
(f 2
o (ξ)− L2(s, ξ))p−1L(s, ξ)

)
dξ.

To reduce the resulting system of integro-differential equations to a pure system of

integral equations we add two independent unknown functions x′, y′ and two new
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relations

x(s) = −
1∫
s

x′(σ)dσ + xo(1), y(s) = −
1∫
s

y′(σ)dσ + yo(1).

We rewrite our equations (4), (5) as follows:

(9) (−2)pp!
[((

L
∂L

∂s

)∣∣∣
(s,−x(s))

)p
x′(s) +

((
L
∂L

∂s

)∣∣∣
(s,y(s))

)p
y′(s)

]
−

1∫
s

( ∂
∂s

)p+1(
L2(σ,−x(σ))− L2(s,−x(σ))

)p
x′(σ)dσ−

1∫
s

( ∂
∂s

)p+1(
L2(σ, y(σ))− L2(s, y(σ))

)p
y′(σ)dσ + Ξ1(s) =

( d
ds

)p+1( const√
1 + s2

)
,

and

(10) (−2)p−1(p− 1)!
[((

L
∂L

∂s

)p−1
L
)∣∣∣

(s,−x(s))
x′(s) +

((
L
∂L

∂s

)p−1
L
)∣∣∣

(s,y(s))
y′(s)

]
−

1∫
s

( ∂
∂s

)p((
L2(σ,−x(σ))− L2(s,−x(σ))

)p−1
L(s,−x(σ))

)
x′(σ)dσ−

1∫
s

( ∂
∂s

)p((
L2(σ, y(σ))− L2(s, y(σ))

)p−1
L(s, y(σ))

)
y′(σ)dσ + Ξ2(s) = 0.

Now we rewrite our system in the form

(11) G(s, Z(s)) =

1∫
s

Θ(s, σ, Z(σ))dσ + Ξ(s).

Here

Z =


x

y

x′

y′

 ,

G(s, Z) =



x

y

(−2)pp!
[(
L∂L
∂s

∣∣∣
(s,−x)

)p
x′ +

(
L∂L
∂s

∣∣∣
(s,y)

)p
y′
]

(−2)p−1(p− 1)!
[((

L∂L
∂s

)p−1
L
)∣∣∣

(s,−x)
x′ +

((
L∂L
∂s

)p−1
L
)∣∣∣

(s,y)
y′
]


,
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Θ(s, σ, Z) = −


x′

y′

Θ1

Θ2

 ,

where

Θ1 = −
( ∂
∂s

)p+1(
L2(σ,−x)− L2(s,−x)

)p
x′ −

( ∂
∂s

)p+1(
L2(σ, y)− L2(s, y)

)p
y′ ,

Θ2 = −
( ∂
∂s

)p((
L2(σ,−x)− L2(s,−x)

)p−1
L(s,−x)

)
x′−( ∂

∂s

)p((
L2(σ, y)− L2(s, y)

)p−1
L(s, y)

)
y′,

and

Ξ(s) =


xo(1)

yo(1)

−Ξ1(s) +
(
d
ds

)p+1(
const√
1+s2

)
−Ξ2(s)

 .

Note that G, Θ, Ξ are well-defined and infinitely smooth for all s, σ ∈ (0, 1] and

Z ∈ R4. Observe also that

DZG
∣∣∣
(s,Z)

=

(
I 0

∗ A

)
,

where

I =

(
1 0

0 1

)
, A = A(s, x, y) = (−2)pp!

((
L∂L
∂s

)∣∣∣
(s,−x)

)p
(−2)pp!

((
L∂L
∂s

)∣∣∣
(s,y)

)p
(−2)p−1(p− 1)!

((
L∂L
∂s

)p−1
L
)∣∣∣

(s,−x)
(−2)p−1(p− 1)!

((
L∂L
∂s

)p−1
L
)∣∣∣

(s,y)

 .

The function

Zo(s) =


xo(s)

yo(s)

dxo
ds

(s)
dyo
ds

(s)


solves the system (11) with G, Θ, Ξ corresponding to h ≡ 0 (we will denote them

by Go, Θo, Ξo) on [1
2
, 1], say.

We claim that

(12) det
(
DZGo

∣∣∣
(s,Zo(s))

)
= det(Ao(s, xo(s), yo(s))) 6= 0 for all s ∈ (0, 1].



A PROBLEM OF KLEE 11

Indeed, the matrix Ao(s, xo(s), yo(s)) has the sign pattern(
+ +

+ −

)
, when p is even, and

(
− −
− +

)
, when p is odd.

Thus, (12) follows. In particular,

det
(
DZGo

∣∣∣
(1,Zo(1))

)
6= 0.

Lemma 8 implies then that we can choose some small δ > 0 and, for any fixed

k ∈ N, construct a Ck-close to Zo(s) solution Z(s) of (11) on [1−3δ, 1] whenever G,

Θ, Ξ are sufficiently close to Go, Θo, Ξo in Ck on certain compact sets. Since G, Θ,

Ξ and their derivatives are some explicit (integrals of) polynomials in Z, s, σ, h(s),

and the derivatives of h(s), this closeness assumption will hold if h is sufficiently

close to zero with sufficiently many derivatives. Moreover, since h vanishes on

[1− δ, 1], the assumptions of Remark 2 are satisfied and we have Z(s) = Zo(s) on

[1− δ, 1].

To prove that the x and y components of the solution we found give a solution

of (4), (5) with f defined by (6), we consider the functions

F (s) :=

y(s)∫
−x(s)

(
f(s, ξ)2 − L2(s, ξ)

)p
dξ − const√

1 + s2
,

H(s) :=

y(s)∫
−x(s)

(
f(s, ξ)2 − L(s, ξ)2

)p−1
L(s, ξ)dξ.

Since equations (9) and (10) of our system (11) were obtained by the differentiation

of equations (4), (5), we have( d
ds

)p+1

F (s) = 0,
( d
ds

)p
H(s) = 0

on [1 − 3δ, 1]. Hence, F and H are polynomials on [1 − 3δ, 1]. Since h(s) = 0,

x(s) = xo(s), y(s) = yo(s) on [1− δ, 1], F and H vanish on [1− δ, 1] and, therefore,

identically. Thus, we conclude that the x and y components of the solutions of (9),

(10) solve (4), (5) on (1− 3δ, 1]. Step 2 is completed.

Step 3. We claim that x = xo, y = yo on [1 − 3δ, 1 − 2δ], i.e., the perturbed

solution returns to the semicircle. Since h is supported on [1− 2δ, 1− δ], we have

L = Lo = sξ and ∂
∂s
L(s, ξ) = ξ for s ∈ [1 − 3δ, 1 − 2δ]. It follows that every time

we differentiate equation (4) (with respect to s) we can divide the result by s to
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obtain

(13)

y(s)∫
−x(s)

(f 2(ξ)− L2
o(s, ξ))

p−kξ2kdξ =

yo(s)∫
−xo(s)

(f 2
o (ξ)− L2

o(s, ξ))
p−kξ2kdξ, k ≤ p.

If we take k = p in (13), we get

(14)

y(s)∫
−x(s)

ξ2pdξ =

yo(s)∫
−xo(s)

ξ2pdξ.

Similarly, for k ≤ p− 1, equation (5) implies that

(15)

y(s)∫
−x(s)

(f 2(ξ)− L2
o(s, ξ))

p−1−kξ2k+1dξ = 0.

Putting k = p− 1 in (15), we get

(16)

y(s)∫
−x(s)

ξ2p−1dξ = 0 =

yo(s)∫
−xo(s)

ξ2p−1dξ.

Equation (16) yields x(s) = y(s), and the symmetry (with respect to 0) of in-

tervals (−xo(s), yo(s)), (−x(s), y(s)), together with (14), yield (−xo(s), yo(s)) =

(−x(s), y(s)) for all s ∈ [1− 3δ, 1− 2δ]. Step 3 is completed.

Step 4. We put x = xo, y = yo on [0, 1 − 3δ], which will result in a function

f defined on [−1, 1] and coinciding with
√

1− ξ2 outside small intervals around

± 1√
2
. It remains to check that (4), (5) are valid for s ∈ [0, 1 − 3δ]. We will prove

the validity of (4). The proof for equation (5) is similar.

Since h ≡ 0 away from (1− 2δ, 1− δ), we have L(s, ξ) = sξ for s ∈ [0, 1− 3δ], so

we need to check that

y(s)∫
−x(s)

(f 2(ξ)− (sξ)2)pdξ =

y(s)∫
−x(s)

(f 2
o (ξ)− (sξ)2)pdξ, ∀s ∈ [0, 1− 3δ].

Recall that x = xo and y = yo everywhere on this interval, so we can write x and

y instead of xo and yo on the right hand side.

Opening the parentheses, we see that it suffices to check that

(17)

y(s)∫
−x(s)

f 2j(ξ)ξ2(p−j)dξ =

y(s)∫
−x(s)

f 2j
o (ξ)ξ2(p−j)dξ, ∀j = 1, . . . , p, s ∈ [0, 1− 3δ].



A PROBLEM OF KLEE 13

Since f ≡ fo outside [−x(1−3δ), y(1−3δ)], it is enough to check (17) for s = 1−3δ.

To this end, we first take s = 1− 3δ, k = p− 1 in (13) and conclude that

(18)

y(1−3δ)∫
−x(1−3δ)

f 2(ξ)ξ2p−2dξ =

y(1−3δ)∫
−x(1−3δ)

f 2
o (ξ)ξ2p−2dξ,

which is (17) for j = 1. Now we go “one step up”, by taking s = 1− 3δ, k = p− 2

in (13), to get

y(1−3δ)∫
−x(1−3δ)

(f 2(ξ)− (sξ)2)2ξ2p−4dξ =

y(1−3δ)∫
−x(1−3δ)

(f 2
o (ξ)− (sξ)2)2ξ2p−4dξ.

The last equality together with (18) yield

y(1−3δ)∫
−x(1−3δ)

f 4(ξ)ξ2p−4dξ =

y(1−3δ)∫
−x(1−3δ)

f 4
o (ξ)ξ2p−4dξ,

which is (17) for j = 2. Proceeding in a similar way we get (17) for j = 1, . . . , p.

This finishes the proof of Theorem 1 in even dimensions.

4. The odd dimensional case

Note that in this case p = q + 1
2
, q ∈ Z+. Then (3) and (1) take the form

(19)

y∫
−x

(f 2 − L2)q+
1
2 =

yo∫
−xo

(f 2
o − L2

o)
q+ 1

2 =
const√
1 + s2

,

(20)

y∫
−x

(f 2 − L2)q−
1
2L = 0,

where fo(ξ) =
√

1− ξ2, Lo(s, ξ) = sξ, and yo(s) = xo(s) = 1/
√

1 + s2.

Let L = L(s, ξ) = sξ + h(s) be a family of linear functions, parameterized by

the slope s. Here the perturbation function h is infinitely smooth, supported on

[1 − 2δ, 1 − δ] for some small δ > 0 to be chosen later, and is small together with

sufficiently many derivatives.
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Our body of revolution Kf will be constructed as a perturbation of the Euclidean

ball (see Figure 4, and compare it with Figure 2). Note that in the case of an odd

dimension, the perturbation is not local.

sl
op
e
=
1

slo
pe

=
1−

3δ

sl
op
e
=
1
−
δ

slo
pe

=
1
− 2δ

sphere

sphere

1 − 3δ 11 − 2δ 1 − δ

supph ⊂ [1− 2δ, 1− δ]

the interval where the boundary

is determined by the integral

equation is [1− 3δ, 1]

Figure 4. Graph of f (the case of an odd dimension).

We shall make our construction in several steps corresponding to the slope ranges
s ∈ [1,∞), s ∈ [1 − 3δ, 1], and s ∈ (0, 1 − 3δ]. We will use different ways to
describe the boundary of Kf within those ranges. We will define f(ξ) = fo(ξ) for

ξ ∈
[
− 1√

2
, 1√

2

]
. We will differentiate (19), (20) and rewrite the resulting equations

in terms of x and y to extend x and y to [1 − 3δ, 1] like we did in the even case.
As before, f is related to x and y by (6). Finally, we will change the point of view
and define the remaining part of f in terms of the radial functions R(α) and r(α),



A PROBLEM OF KLEE 15

related to f by

(21) f(R(α) cosα) = R(α) sinα, f(−r(α) cosα) = r(α) sinα, α ∈ [0, π
2
].

Note that the radial function

ρK(u) = sup{t > 0 : tu ∈ K}
of the resulting body K satisfies

(22) ρK(u) =

{
R(α) if u1 > 0,

r(α) if u1 < 0,

where u = (u1, . . . ) ∈ Sd−1 and α ∈ [0, π
2
], cosα = |u1|.

The solutions R(α) and r(α) of the equations that we will use during the last
step may develop a singularity at α = 0. To avoid this, we will impose several
additional cancellation conditions on the perturbation function h. We will use the
Borsuk-Ulam Theorem to show the existence of a non-zero function h satisfying
these cancellation restrictions.

Step 1. We put x = xo, y = yo on [1,∞), which is equivalent to putting

f(ξ) =
√

1− ξ2 for ξ ∈ [− 1√
2
, 1√

2
].

Step 2. Differentiating equation (19) q + 1 times, we obtain

(23)
( ∂
∂s

)q+1
y(s)∫

−x(s)

(f 2(ξ)− L2(s, ξ))q+
1
2dξ =

( −xo(1)∫
−x(s)

+

y(s)∫
yo(1)

)( ∂
∂s

)q+1(
(f 2(ξ)− L2(s, ξ))q+

1
2

)
dξ + V1(s) =

( d
ds

)q+1 const√
1 + s2

,

where

V1(s) =

yo(1)∫
−xo(1)

( ∂
∂s

)q+1(
(f 2
o (ξ)− L2(s, ξ))q+

1
2

)
dξ.

Note that, unlike it was for the function Ξ1 in the even-dimensional case, the
function V1 is well-defined only for s ≤ 1 and only if ‖h‖C1 is much less than 1.
Also, even in that case, V1(s) is C∞ on [0, 1) but not at 1, where it is merely
continuous.

Observe that( ∂
∂s

)q+1(
(f 2(ξ)− L2(s, ξ))q+

1
2

)
=

J1(s, ξ, f(ξ))√
f 2(ξ)− L2(ξ)

,

where J1(s, ξ, f) is some polynomial expression in s, ξ, f , h(s), and the derivatives
of h at s.

Making the change of variables ξ = −x(σ) in the integral
∫ −xo(1)
−x(s) , and ξ = y(σ)

in the integral
∫ y(s)
yo(1)

, we can rewrite the sum of integrals on the left hand side of
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(23) as

−
1∫
s

[
J1(s,−x(σ), L(σ,−x(σ)))√
L2(σ,−x(σ))− L2(s,−x(σ))

dx

ds
(σ) +

J1(s, y(σ), L(σ, y(σ)))√
L2(σ, y(σ))− L2(s, y(σ))

dy

ds
(σ)

]
dσ.

Now write

L2(σ, ξ)− L2(s, ξ) = (L(σ, ξ)− L(s, ξ))(L(σ, ξ) + L(s, ξ)),

and
L(σ, ξ)− L(s, ξ) = σξ + h(σ)− sξ − h(s) = (σ − s)(ξ +H(s, σ)),

where

H(s, σ) =
h(σ)− h(s)

σ − s =

1∫
0

h′(s+ (σ − s)τ)dτ

is an infinitely smooth function of s and σ. Denote

K1(s, σ, ξ) =
J1(s, ξ, L(σ, ξ))√

(ξ +H(s, σ))(L(σ, ξ) + L(s, ξ))
.

The function K1 is well-defined and infinitely smooth for all s, σ, ξ satisfying
(ξ + H(s, σ))(L(σ, ξ) + L(s, ξ)) > 0. If ‖h‖C1 is small enough, this condition is
fulfilled whenever s, σ∈ [1

2
, 1] and |ξ| > 1

2
.

Now we can rewrite equation (23) in the form

(24) −
1∫
s

(
K1(s, σ,−x(σ))

dx

ds
(σ) + K1(s, σ, y(σ))

dy

ds
(σ)
) dσ√

σ − s =

−V1(s) +
( d
ds

)q+1 const√
1 + s2

.

Similarly, we can differentiate (20) and transform the resulting equation into

(25) −
1∫
s

(
K2(s, σ,−x(σ))

dx

ds
(σ) + K2(s, σ, y(σ))

dy

ds
(σ)
) dσ√

σ − s = −V2(s),

where K2 is well-defined and infinitely smooth in the same range as K1. The
function V2 on the right hand side of (25) is given by

V2(s) =

yo(1)∫
−xo(1)

( ∂
∂s

)q(
(f 2
o (ξ)− L2(s, ξ))q−

1
2L(s, ξ)

)
dξ,

and everything that we said about V1 applies to V2 as well.
Equations (24) and (25) together can be written in the form

(26)

1∫
s

K(s, σ, z(σ), dz
ds

(σ))√
σ − s dσ = R(s),
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where, for z =

(
x
y

)
, z′ =

(
x′

y′

)
∈ R2,

K(s, σ, z, z′) = −
(
K1(s, σ,−x)x′ + K1(s, σ, y) y′

K2(s, σ,−x)x′ + K2(s, σ, y) y′

)
,

R(s) =

 −V1(s) +
(
d
ds

)q+1
const√
1+s2

−V2(s)

 .

By Lemma 6 with b = 1 (see Appendix), equation (26) is equivalent to

(27) −G2(s, s, z, z
′) +

1∫
s

∂

∂s
G2(s, σ, z(σ),

dz

ds
(σ))dσ = R̃(s),

where

G2(s, σ, z, z
′) =

1∫
0

K(s+ τ(σ − s), σ, z, z′)√
τ(1− τ)

dτ, R̃(s) =
d

ds

1∫
s

R(s′)√
s′ − sds

′.

Note that

G2(s, s, z, z
′) = C · K(s, s, z, z′), C =

1∫
0

dτ√
τ(1− τ)

.

To reduce the resulting system of integro-differential equations to a pure system
of integral equations we add two independent unknown functions x′, y′, denote

z′ =

(
x′

y′

)
, zo(s) =

(
xo(s)
yo(s)

)
, and add two new relations

z(s) = −
1∫
s

z′(σ)dσ + zo(1).

Together with (27), they lead to the system

(28) G(s, Z(s)) =

1∫
s

Θ(s, σ, Z(σ))dσ + Ξ(s), Z =

(
z
z′

)
=


x
y
x′

y′

 .

Here

G(s, Z) =

(
z

−G2(s, s, z, z
′)

)
, Θ(s, σ, Z) = −

(
z′

∂
∂s
G2(s, σ, z, z

′)

)
,

and

Ξ(s) =

(
zo(1)

R̃(s)

)
.

In what follows, we will choose h so that ‖h‖C1 is much less than 1. In this case,
G, Θ are well-defined and infinitely smooth whenever s, σ ∈ [1

2
, 1], |x|, |y|> 1

2
,
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z′ ∈ R2, and Ξ is well-defined and infinitely smooth on [1
2
, 1). Observe also that

DZG
∣∣∣
(s,Z(s))

=

(
I 0
∗ A

)
,

where

I =

(
1 0
0 1

)
, A(s, z) = C · E(s, z),

and

E(s, z) =

(
K1(s, s,−x) K1(s, s, y)
K2(s, s,−x) K2(s, s, y)

)
.

The function

Zo(s) =

(
zo(s)
dzo
ds

(s)

)
=


xo(s)
yo(s)
dxo
ds

(s)
dyo
ds

(s)


solves the system (28) with G, Θ, Ξ corresponding to h ≡ 0 (we will denote them
by Go, Θo, Ξo) on [1

2
, 1], say.

We claim that

(29) det
(
DZGo

∣∣∣
(s,Zo(s))

)
= det(Ao(s, zo(s))) 6= 0 for all s ∈ [1

2
, 1].

Indeed, since K1,2(s, s, ξ) have the same signs as J1,2(s, ξ, L(s, ξ)) and since

J1(s, ξ, L(s, ξ)) = (2q + 1)!!
(
− L(s, ξ)

∂

∂s
L(s, ξ)

)q+1

,

J2(s, ξ, L(s, ξ)) = (2q − 1)!!
(
− L(s, ξ)

∂

∂s
L(s, ξ)

)q
L(s, ξ),

we conclude that the matrix Ao(s, zo(s)) has the same sign pattern as the matrix(
(−1)q+1 (−1)q+1

(−1)q(−xo(s)) (−1)qyo(s)

)
,

i.e., the signs in the first row are the same, and the signs in the second one are
opposite.

Thus, (29) follows. In particular,

det
(
DZGo

∣∣∣
(1,Zo(1))

)
6= 0.

Lemma 8 implies then that we can choose some small δ > 0 and construct a Ck-
close to Zo(s) solution Z(s) of (28) on [1− 3δ, 1] whenever G, Θ, Ξ are sufficiently
close to Go, Θo, Ξo in Ck on certain compact sets. Since G, Θ, Ξ and their
derivatives are (integrals of) some explicit elementary expressions in Z, s, σ, h(s),
and the derivatives of h(s), this closeness assumption will hold if h is sufficiently
close to zero with sufficiently many derivatives. Moreover, since h vanishes on
[1− δ, 1], the assumptions of Remark 2 are satisfied and we have Z(s) = Zo(s) on
[1− δ, 1].
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The x and y components of Z solve the equations obtained by differentiating
(19) and (20). The passage to (19), (20) is now exactly the same as in the even
case.

Step 3. From now on, we change the point of view and switch to the functions
R(α) and r(α), α ∈ (0, π

2
), related to f by (21). The functions x and y, which we

have already constructed, implicitly define C∞-functions Rh(α) and rh(α) for all α
with tanα > 1− 3δ.

Instead of parameterizing hyperplanes by the slopes s of the corresponding linear
functions, we will parameterize them by the angles β they make with the x1-axis,
where β is related to s by tan β = s.

Our next task will be to derive the equations that would ensure that all central
sections corresponding to angles β with tan β < 1−2δ are maximal and of constant
volume. Note that those sections are already defined and satisfy these properties
when tan β ∈ (1− 3δ, 1− 2δ).

We remind that if the volume of the central section K ∩ v⊥ of a convex body K
is constant, then

(30)
1

d− 1
(Rρd−1K )(v) = vold−1(K ∩ v⊥) = const,

where R is the Spherical Radon Transform, and ρK is the radial function of the
body K.

Since
vold−1(K ∩ (v⊥ + te1)) = vold−1((K − te1) ∩ v⊥),

the central section corresponding to a unit vector v with 〈v, e1〉 6= 0 is of maximal
volume if and only if

(31) (R(ρd−2K (·) ∂

∂t

∣∣∣∣
t=0

ρK−te1(·))(v) = 0.

Here e1 is the ort along the x1-axis. We need these equations to hold for all unit
vectors v = (± sinα, . . . ) ∈ Sd−1 corresponding to the angles α with tanα < 1−2δ.

Note that when K = Kf is the body of revolution we are constructing, these
equations hold if tanα ∈ (1− 3δ, 1− 2δ), and the left hand sides of (30), (31) are
already defined on the cap

{v ∈ Sd−1 : v = (± sinα, . . . ), α ∈ [0, π
2
], tanα ≥ 1− 3δ}

and are smooth even rotation invariant functions there. We will denote these
functions by ϕh and ψh correspondingly.

Now we put ϕh(v) = const and ψh(v) = 0 for v = (± sinα, . . . ), tanα ∈ [0, 1−2δ].
This definition agrees with the one we already have when tanα ∈ [1− 3δ, 1− 2δ],
so ϕh and ψh are even rotation invariant infinitely smooth functions on the entire
sphere.

Recall that the values of Rg(v) for all v = (± sinα, . . . ) with tanα > 1− 3δ are
completely defined by the values of the even function g(u) for all u = (± cosα, . . . ),
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tanα > 1− 3δ and for bodies of revolution (but not in general) the converse is also
true (see the explicit inversion formula in [Ga], page 433, formula (C.17)).

Since the equation Rg = g̃ with even C∞ right hand side g̃ is equivalent to

g(v) + g(−v)

2
= R−1g̃(v),

we can rewrite our equations (30) and (31) as

ρd−1K (u) + ρd−1K (−u) = 2(d− 1)(R−1ϕh)(u)

and

ρd−2K (u)
(

∂
∂t

∣∣
t=0

ρK−te1

)
(u) + ρd−2K (−u)

(
∂
∂t

∣∣
t=0

ρK−te1

)
(−u) = 2(d− 1)(R−1ψh)(u).

The already constructed part of ρK satisfies these equations for u = (± cosα, . . . )
with tanα > 1− 3δ.

Since the Spherical Radon Transform commutes with rotations and our initial
ρK was rotation invariant, the even functions 2(d− 1)R−1ϕh(u), 2(d− 1)R−1ψh(u)
are rotation invariant as well and can be written as Φh(α) and Ψh(α), where u =
(± cosα, . . . ), α ∈ [0, π

2
]. Note that the mappings h 7→ Φh, h 7→ Ψh are continuous

from Ck+d to Ck, say. Thus, for all h sufficiently close to zero in Ck+d, Φh and Ψh

will be close to Φ0 ≡ 2 and Ψ0 ≡ 0 in Ck.
We will be looking for a rotation invariant solution ρK , which will be described in

terms of two functions R(α) and r(α) related to it by (22). Equation (30) translates
into

(32) rd−1(α) +Rd−1(α) = Φh(α).

To rewrite equation (31) , observe that

(33) ρd−2K (u)
(

∂
∂t

∣∣
t=0

ρK−te1

)
(u) + ρd−2K (−u)

(
∂
∂t

∣∣
t=0

ρK−te1

)
(−u) =

−
[
Rd−3(α)(R(α) sinα)′ − rd−3(α)(r(α) sinα)′

]
(see Lemma 9 in Appendix). Thus, equation (31) translates into

Rd−3(α)(R(α) sinα)′ − rd−3(α)(r(α) sinα)′ = −Ψh(α).

Multiplying it by (d− 2) sind−3 α, we obtain

(34)
(

(R(α) sinα)d−2 − (r(α) sinα)d−2
)′

= −(d− 2)Ψh(α) sind−3 α.

Taking into account the condition R(π
2
) = r(π

2
) and integrating, we see that (34)

can also be written as

(35) Rd−2(α)− rd−2(α) =
Θh(α)

sind−2 α
,

where

Θh(α) = (d− 2)

π/2∫
α

Ψh(β) sind−3 βdβ.
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Note that equations (32), (35) together with conditions R(α) > 0 and r(α) > 0
determine R(α) and r(α) uniquely, and the originally constructed functions Rh and
rh satisfy these equations for all α ∈ [0, π

2
] with tanα ≥ 1− 3δ. Thus, any solution

R, r of this system will satisfy R(α) = Rh(α), r(α) = rh(α) in this range.
It remains to show that the solutions R and r exist at all and define a convex

body if h is chosen appropriately. Note that when h is small with several derivatives
the functions Φh − 2 and Ψh are close to zero uniformly with several derivatives.
The only problem is that the right hand side of (35) can blow up as α → 0+. To
prevent it, we will choose the perturbation function h close to 0 in C2d+k so that

(36) Θh(0) = Θ′h(0) = ... = Θ
(d+k−1)
h (0) = 0.

Then, the right hand side of (35) will be close to zero in Ck([0, π
2
]). Since the map

D : (R, r) 7→ (Rd−1 + rd−1, Rd−2 − rd−2)
is smoothly invertible near the point (1, 1) by the inverse function theorem, the
functions R, r exist in this case on the entire interval [0, π

2
], and are close to 1 in

C2. Moreover, R′(0) = r′(0) = 0, because Φ
′
h(0) = 0 (otherwise the function R−1ϕh

would not be smooth at (1, 0, . . . , 0)), and the right hand side of (35) is o(α) as
α → 0+. This is enough to ensure that the body given by R and r is convex and
corresponds to some strictly concave function f defined on [−r(0), R(0)].

Finally, to prove the existence of a perturbation function h for which cancellation
conditions (36) hold, we use the Borsuk-Ulam Theorem, stating that a continuous
map from Sm to Rm, taking the antipodal points to antipodal points, contains zero

in its image. For x = (x1, ..., xd+k+1) ∈ Sd+k we define hx =
d+k+1∑
j=1

xjhj, where hj

are not identically zero smooth functions on [1 − 2δ, 1 − δ] with pairwise disjoint
supports. We define the map B : Sd+k → Rd+k by

B : (x1, ..., xd+k+1) 7→ hx 7→ (Θhx(0),Θ′hx(0), ...,Θ
(d+k−1)
hx

(0)).

Observing that R(−h) = rh and r(−h) = Rh, and using the linearity of the Inverse
Spherical Radon Transform, we conclude that the map h 7→ Ψh is odd. Hence, B
maps antipodal points to antipodal points, and there exists some not identically
zero h for which (36) holds. This completes the proof of Theorem 1 in the case of
an odd dimension.

5. Appendix

All results collected in this appendix are well-known. However, since we targeted
this article not exclusively at specialists in integral equations and since in many
cases it was much harder to find an exact reference than to write a full proof, we
decided to present them here. The reader should also keep in mind that we tailored
the exact statements to our particular needs, so we cut corners whenever possible
to reduce the presentation to the bare minimum.
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Lemma 3. Let g, q ∈ C([a, b]) be two functions with values in Rm. Then, g ≡ q if
and only if for every s ∈ [a, b) the equality

b∫
s

g(s′)√
s′ − s ds

′ =

b∫
s

q(s′)√
s′ − s ds

′

holds.

Proof. The only non-trivial statement here is that the equality of integrals im-
plies the equality of functions. To prove it, take t < b, multiply both parts by

1√
s−t , and integrate with respect to s from t to b. Making the change of variables

s = t + τ(s′ − t), performing the integration with respect to τ first, and canceling

the common factor
∫ 1

0
dτ√
τ(1−τ)

> 0, we obtain

b∫
t

g(s′) ds′ =

b∫
t

q(s′) ds′ for all t ∈ [a, b).

The result follows now from the fundamental theorem of calculus and the continuity
assumption. �

Lemma 4. Let R : [a, b]→ Rm. If R ∈ C([a, b]) ∩ C∞([a, b)), then the function

s 7→
b∫
s

R(s′)√
s′ − s ds

′

belongs to C∞([a, b)) and tends to zero as s→ b−.

Proof. The second statement follows from the crude bound

b∫
s

|R(s′)|√
s′ − s ds

′ ≤ 2‖R‖C([a,b])

√
b− s → 0

as s→ b−. To prove the first one, fix δ > 0. For s < b− δ, we have

b∫
s

R(s′)√
s′ − s ds

′ =

s+δ∫
s

R(s′)√
s′ − s ds

′ +

b∫
s+δ

R(s′)√
s′ − s ds

′.

The kernel 1√
s′−s is C∞-smooth in s for s′ > s+δ, so the second integral is infinitely

smooth on [a, b) because R is infinitely smooth there. The first integral can be
rewritten as

δ∫
0

R(s+ τ)√
τ

dτ.

Since s+τ stays away from b when s stays away from b−δ, this integral also defines
a C∞ function on [a, b− δ). Since δ is arbitrary, the lemma follows. �
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Lemma 5. Let U ∈ C([a, b]2). Then the function

s 7→
b∫
s

U(s, σ)√
σ − s dσ

extended by zero to s = b is continuous.

Proof. Let s < b. Fix δ ∈ (0, b− s) and let |s− s′| < δ
2
. Write∣∣∣ b∫

s′

U(s′, σ)√
σ − s′ dσ −

b∫
s

U(s, σ)√
σ − s dσ

∣∣∣ ≤
s+δ∫
s′

|U(s′, σ)|√
σ − s′ dσ +

s+δ∫
s

|U(s, σ)|√
σ − s dσ +

b∫
s+δ

∣∣∣U(s′, σ)√
σ − s′ −

U(s, σ)√
σ − s

∣∣∣ dσ.
The first two integrals are bounded by 2‖U‖C

√
δ + |s′ − s| ≤ 2‖U‖C

√
2δ and

2‖U‖C
√
δ respectively. The third one tends to zero as s′ → s because the inte-

grand tends to zero uniformly. The continuity at b follows from the inequality∣∣∣ b∫
s

U(s, σ)√
σ − s dσ

∣∣∣ ≤ 2‖U‖C
√
b− s.

�

Lemma 6. Let U ∈ C∞([a, b]2), and let R ∈ C([a, b]) ∩ C∞([a, b)). Then the
equation

(37)

b∫
s

U(s, σ)√
σ − s dσ = R(s)

holds for all s ∈ [a, b) if and only if so does the equation

−V (s, s) +

b∫
s

∂V

∂s
(s, σ)dσ = R̃(s),

where

V (s, σ) =

1∫
0

U(s+ τ(σ − s), σ)√
τ(1− τ)

dτ, R̃(s) =
d

ds

b∫
s

R(s′)√
s′ − s ds

′.

Proof. Observe that our assumption on U implies that V ∈ C∞([a, b]2). Also, by

the previous lemma, R̃(s) is well-defined for s ∈ [a, b). By Lemmata 5 and 4 both
parts of (37) are continuous functions. Therefore, by Lemma 3, equation (37) is
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equivalent to ∫∫
s<s′<σ<b

U(s′, σ)√
σ − s′

√
s′ − s ds

′dσ =

b∫
s

R(s′)√
s′ − s ds

′.

Making the change of variables s′ = t + τ(σ − s) and performing the integration

with respect to τ first, we can rewrite the left hand side as
∫ b
s
V (s, σ)dσ. Observe

that both parts tend to zero as s → b−, and are differentiable functions on [a, b).
Thus, their equality is equivalent to the equality of their derivatives. �

Lemma 7. (Banach Fixed Point Theorem, [Ba]). Suppose that (X, d) is a
complete metric space and T is a mapping from X to X satisfying

d(T (x), T (y)) ≤ k d(x, y)

for all x, y ∈ X with some k ∈ (0, 1). Then
1) there exists a unique fixed point z∗ of the mapping T ,
2) the sequence of Picard iterations zk+1 = T (zk) starting with any point z0 ∈ X

converges to z∗,

3) for every point z ∈ X, we have d(z, z∗) ≤
d(T (z), z)

1− k .

Lemma 8. Let Ω be a domain in Rm, let [a, b] ⊂ R, and let Go : [a, b]×Ω→ Rm,
Θo : [a, b]2 × Ω → Rm, Ξo : [a, b) → Rm, Zo : [a, b] → Ω. Assume that Go, Θo,
Zo are infinitely smooth, Ξo is continuous, and

Go(s, Zo(s)) =

b∫
s

Θo(s, σ, Zo(σ))dσ + Ξo(s)

for all s ∈ [a, b].
Then Ξo extends to a C∞-function on [a, b]. If, in addition,

det
(
DZGo

∣∣∣
(b,Zo(b))

)
6= 0,

then there exist ε > 0, δ > 0, such that on the interval [b − 3δ, b], every perturbed
equation

(38) G(s, Z(s)) =

b∫
s

Θ(s, σ, Z(σ))dσ + Ξ(s)

has a unique continuous solution Z(s) satisfying ‖Z−Zo(b)‖C([b−3δ,b]) < ε, provided
G, Θ, Ξ are infinitely smooth and

‖G−Go‖C1([b−3δ,b]×B), ‖Θ−Θo‖C1([b−3δ,b]2×B), ‖Ξ−Ξo‖C1([b−3δ,b])

are small enough. This solution is infinitely smooth and close to Zo in Ck, provided
that

‖G−Go‖Ck([b−3δ,b]×B), ‖Θ−Θo‖Ck([b−3δ,b]2×B), ‖Ξ−Ξo‖Ck([b−3δ,b])
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are small enough. Moreover, the solutions corresponding to two different triples G,
Θ, Ξ that are close in corresponding Ck are Ck close to each other.

Here B is the closed ball of radius ε centered at Zo(b).

Proof. The first statement is obvious because all terms in the unperturbed equation
except Ξo are defined and infinitely smooth on the entire interval [a, b].

Next, denote Q = DZGo(b, Zo(b)) and observe that there exist ε > 0, δ1 > 0
such that B ⊂ Ω, and for all s ∈ [b − 3δ1, b] and all Z such that |Z − Zo(b)| < ε,
we have

|Zo(s)− Zo(b)| <
ε

8
and ‖DZGo((s, Z))−Q‖ ≤ 1

8‖Q−1‖ .

The perturbed equation (38) can be rewritten as Z(s) = (TZ)(s), where

(TZ)(s) = Z(s)−Q−1
[
G(s, Z(s))−

b∫
s

Θ(s, σ, Z(σ))dσ −Ξ(s)
]
.

We will show that if δ ∈ (0, δ1) is small enough and ‖G−Go‖C1([b−3δ,b]) ≤
1

8‖Q−1‖ ,

then T is a contraction on the set X of continuous functions mapping C([b− 3δ, b])
to B. Take two functions Z1 and Z2 in C([b − 3δ, b]) with values in B and notice
that ∣∣∣ b∫

s

(
Θ(s, σ, Z1(σ))−Θ(s, σ, Z2(σ))

)
dσ
∣∣∣ ≤

3δ
[

max
s′,σ′∈[b−3δ,b],|Z−Zo(b)|≤ε

‖DZΘ(s′, σ′, Z)‖
]
‖Z1 − Z2‖C([b−3δ,b])

for all s ∈ [b− 3δ, b]. So, if δ is chosen so small that

3δ ‖Q−1‖
(
‖Θo‖C1([b−3δ,b]) + 1

)
≤ 1

4

and if ‖Θ−Θo‖C1([b−3δ,b]) < 1, we have

3δ ‖Q−1‖ max
s′,σ′∈[b−3δ,b],|Z−Zo(b)|≤ε

‖DZΘ(s′, σ′, Z)‖ ≤

3δ ‖Q−1‖
(
‖Θo‖C1([b−3δ,b]) + ‖Θ−Θo‖C1([b−3δ,b])

)
<

1

4
,

and ∣∣∣Q−1( b∫
s

Θ(s, σ, Z1(σ))dσ −
b∫
s

Θ(s, σ, Z2(σ))dσ
)∣∣∣ ≤ 1

4
‖Z1 − Z2‖C([b−3δ,b])

for all s ∈ [b− 3δ, b].
Consider the function H(s, Z) = Z −Q−1G(s, Z). Note that

‖DZH‖ = ‖I−Q−1DZG‖ = ‖Q−1(DZG−Q)‖ ≤

‖Q−1‖
[
‖DZGo −Q‖+ ‖DZG−Go‖

]
≤ 1

4
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when s ∈ [b− 3δ, b] and |Z − Zo(b)| ≤ ε. Thus,∣∣∣(Z1(s)−Q−1G(s, Z1(s))
)
−
(
Z2(s)−Q−1G(s, Z2(s))

)∣∣∣ =
∣∣∣H(s, Z1)−H(s, Z2)

∣∣∣ ≤[
max

s′∈[b−3δ,b], |Z−Zo(b)|≤ε
‖DZH(s′, Z)‖

]
‖Z1 − Z2‖C([b−3δ,b]) ≤

1

4
‖Z1 − Z2‖C([b−3δ,b]).

Bringing these estimates together, we see that∣∣∣(TZ1)(s)− (TZ2)(s)
∣∣∣ ≤ 1

2
‖Z1 − Z2‖C([b−3δ,b])

for all s ∈ [b− 3δ, b]. To apply the Banach fixed point theorem it remains to show
that T maps X to itself. To this end, notice that∣∣∣(TZo)(s)− Zo(s)∣∣∣ =

∣∣∣Q−1[(G(s, Zo(s))−Go(s, Zo(s))
)
−

b∫
s

(
Θ(s, σ, Zo(σ))−Θo(s, σ, Zo(σ))

)
dσ −

(
Ξ(s)−Ξo(s)

)] ∣∣∣ ≤
(39) ‖Q−1‖

(
‖G−Go‖C([b−3δ,b]×B)+

3δ‖Θ−Θo‖C([b−3δ,b]2×B) + ‖Ξ(s)−Ξo(s)‖C([b−3δ,b])
)
<
ε

4
,

provided that the C-norms in the last two lines are small enough.
Let Z ∈ X. It is obvious that TZ is a continuous function on [b− 3δ, b]. Also,

|Z(s)− Zo(s)| ≤ |Z(s)− Zo(b)|+ |Zo(s)− Zo(b)| ≤ ε+
ε

8
=

5ε

8

for all s ∈ [b− 3δ, b], so ‖Z − Zo‖C([b−3δ,b]) ≤ 5ε
8

, and

|TZ(s)− Zo(b)| ≤ |(TZ)(s)− (TZo)(s)|+ |(TZo)(s)− Zo(s)|+ |Zo(s)− Z(b)| ≤
1

2
· 5ε

8
+
ε

8
+
ε

8
< ε.

Thus, TZ ∈ X as well. This completes the proof of the existence and uniqueness
part of the lemma.

To show that Z is smooth, notice that the right hand side of equation (38) is a
C1 function for every Z ∈ X. Thus, the left hand side G(s, Z(s)) is also C1. Since
G ∈ C∞([a, b] × Ω) and DZG(s, Z) 6= 0 whenever s ∈ [b − 3δ, b], |Z − Zo(b)| < ε,
we conclude by the implicit function theorem that Z ∈ C1 and, moreover,

dZ

ds
(s) =

(
DZG(s, Z(s))

)−1(
− ∂G

∂s
(s, Z(s))−Θ(s, s, Z(s)+

b∫
s

∂Θ

∂s
(s, σ, Z(σ))dσ+

dΞ

ds
(s)
)
.

Differentiating this identity again and again and plugging the expression for the
derivative dZ

ds
into the right hand side after every differentiation, we see that Z is

infinitely smooth, and, moreover, ( d
ds

)kZ can be written as some explicit expression
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involving only Z itself and various partial derivatives of the functions G, Θ, Ξ of
orders up to k. We see from here that to show that Z is close to Zo in Ck under
the condition that the norms

‖G−Go‖Ck([b−3δ,b]×B), ‖Θ−Θo‖Ck([b−3δ,b]2×B), ‖Ξ−Ξo‖Ck([b−3δ,b])

are small, it suffices to show that, under this condition, the norm ‖Z−Zo‖C([b−3δ,b])
is small. By the third part of the Banach fixed point theorem, this would follow
from the smallness of ‖TZo − Zo‖C([b−3δ,b]). But we have already estimated this
difference by

‖Q−1‖
(
‖G−Go‖C([b−3δ,b]×B) + 3δ‖Θ−Θo‖C([b−3δ,b]2×B) + ‖Ξ(s)−Ξo(s)‖C([b−3δ,b])

)
in (39).

Exactly the same argument can be used to prove the last statement of the lemma.
�

Remark 2. If Ξ = Ξo on [b− δ, b], then to check that ‖Ξ−Ξo‖Ck([b−3δ,b]) is small,
it suffices to check that ‖Ξ − Ξo‖Ck([b−3δ,b−δ]) is small. If, in addition, G(s, Z) =
Go(s, Z) for all s ∈ [b−δ, b], and Θ(s, σ, Z) = Θo(s, σ, Z) for all s, σ ∈ [b−δ, b], then
the solution Z, whose existence and uniqueness is asserted in Lemma 8, coincides
with Zo on [b− δ, b].

This follows from the fact that if Z = Zo on [b− δ, b], then TZ = Z on [b− δ, b]
as well, so if we start the Picard iterations with Zo, the values on this interval will
never change.

Lemma 9. Let K be a body of revolution around the x1-axis and let ρK be the
radial function of K. Then

ρd−2K (u)
(

∂
∂t

∣∣
t=0

ρK−te1

)
(u) + ρd−2K (−u)

(
∂
∂t

∣∣
t=0

ρK−te1

)
(−u) =

−
[
Rd−3(α)(R(α) sinα)′ − rd−3(α)(r(α) sinα)′

]
with R and r defined by

ρK(u) =

{
R(α) if u1 > 0,

r(α) if u1 < 0,

where u = (u1, . . . ) ∈ Sd−1 and α ∈ (0, π
2
), cosα = |u1|.

Proof. Denote by W the (x1, x2)-plane. Let l be the line {(x1, x2, . . . ) ∈ W :
x2 = x1 tanα}, where α ∈ (0, π/2). For a small t > 0 we denote by lt the line
{x ∈ W : x2 = (x1 − t) tanα}.
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Denote by A and B the “top” points of intersection of the boundary of K with l
and lt correspondingly. Let C be the point of intersection of lt with the hyperplane
orthogonal to l and passing through A (see Figure 5). Observe that A, B, C ∈ W
and that K ∩ lt is the one-dimensional central section of the shifted body K − te1.

t

α

A

B

C

ℓ ℓt

R(α) dα

R
′ (α

)
dα

Figure 5. ρK−te1(u) = R(α)− t cosα− tR
′
(α)

R(α)
sinα

By elementary geometry,

ρK−te1(u) = R(α)− t cosα− t sinα tanCAB,

where u = (cosα, . . . ) ∈ Sd−1 and α ∈ (0, π
2
). Observe that, up to terms of order

t2, we have

tanCAB =
R′(α)

R(α)
.

Hence,

ρK−te1(u) = R(α)− t cosα− tR
′(α)

R(α)
sinα + o(t2).

Similarly,

ρK−te1(−u) = r(α) + t cosα + t
r′(α)

r(α)
sinα + o(t2).
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Finally,

ρd−2K (u)
(

∂
∂t

∣∣
t=0

ρK−te1

)
(u) + ρd−2K (−u)

(
∂
∂t

∣∣
t=0

ρK−te1

)
(−u) =

Rd−2(α)(− cosα− R′(α)

R(α)
sinα)− rd−2(α)(− cosα− r′(α)

r(α)
sinα) =

Rd−3(α)(−R(α) cosα−R′(α) sinα)− rd−3(α)(−r(α) cosα− r′(α) sinα) =

−
[
Rd−3(α)(R(α) sinα)′ − rd−3(α)(r(α) sinα)′

]
.

�
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