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Abstract. We show that if d ≥ 4 is even, then one can find two essentially
different convex bodies such that the volumes of their maximal sections, central
sections, and projections coincide for all directions.

1. Introduction

As usual, a convex body K ⊂ Rd is a compact convex subset of Rd with non-empty
interior. We assume that 0 ∈ K. We consider the central section function AK :

(1) AK(u) = vold−1(K ∩ u⊥), u ∈ Sd−1,
the maximal section function MK :

(2) MK(u) = max
t∈R

vold−1(K ∩ (u⊥ + tu)), u ∈ Sd−1,

and the projection function PK :

(3) PK(u) = vold−1(K|u⊥), u ∈ Sd−1.
Here u⊥ stands for the hyperplane passing through the origin and orthogonal to the
unit vector u, K ∩ (u⊥ + tu) is the section of K by the affine hyperplane u⊥ + tu,
and K|u⊥ is the projection of K to u⊥. Observe that AK ≤ MK ≤ PK . It is well
known, [Ga], that for origin-symmetric bodies each of the functions MK = AK and
PK determines the convex body K ⊂ Rd uniquely. More precisely, either of the
conditions

MK1(u) = MK2(u) ∀u ∈ Sd−1,
and

PK1(u) = PK2(u) ∀u ∈ Sd−1,
implies K1 = K2, provided K1, K2 are origin-symmetric and convex.

In this paper, we address the (im)possibility of analogous results for not necessarily
symmetric convex bodies.

It is well known, [BF], that on the plane there are convex bodies K that are not
Euclidean discs, but nevertheless satisfy MK(u) = PK(u) = 1 for all u ∈ S1. These
are the bodies of constant width 1.
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In 1929 T. Bonnesen asked whether every convex body K ⊂ R3 is uniquely defined
by PK and MK , (see [BF], page 51). We note that in any dimension d ≥ 3, it is not
even known whether the conditions MK ≡ c1, PK ≡ c2 are incompatible for c1 < c2.

In 1969 V. Klee asked whether the condition MK1 ≡MK2 implies K1 = K2, or, at
least, whether the condition MK ≡ c implies that K is a Euclidean ball, see [Kl1].

Recently, R. Gardner and V. Yaskin, together with the second and the third named
authors constructed two bodies of revolutionK1, K2 such thatK1 is origin-symmetric,
K2 is not origin-symmetric, but MK1 ≡MK2 , thus answering the first version of Klee’s
question but not the second one (see [GRYZ]).

The main results we will present in this paper are the following.

Theorem 1. If d = 4, there exists a convex body of revolution K ⊂ Rd satisfying
MK ≡ const that is not a Euclidean ball.

Theorem 2. If d ≥ 4 is even, there exist two essentially different convex bodies of
revolution K1, K2 ⊂ Rd such that AK1 ≡ AK2, MK1 ≡MK2, and PK1 ≡ PK2.

Theorem 1 answers the question of Klee in R4, and Theorem 2 answers the analogue
of the question of Bonnesen in even dimensions.

Remark 1. Theorem 1 is actually true in all dimensions, but the construction for
d 6= 4 is long and rather technical, so we will present it in a separate paper.

We borrowed the general idea of the construction of the bodies K1 and K2 in
Theorem 2 from [RY], which attributes it to [GV] and [GSW]. It can be easily
understood from the following illustration.

Figure 1. Two small-eared round faces in a cap

Here the ”ears” and the ”cap” will be made very small in order not to destroy the
convexity of the bodies.

The paper is organized as follows. In Section 2 we reduce the problem to finding a
non-trivial solution to two integral equations. In Section 3 we prove Theorem 1. In
Section 4 we prove Theorem 2.
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2. Reduction to a system of integral equations

From now on, we assume that d ≥ 3. We will be dealing with the bodies of
revolution

Kf = {x ∈ Rd : x22 + x23 + ...+ x2d ≤ f 2(x1)},
obtained by the rotation of a smooth (except for endpoints) concave function f
supported on [−1, 1] about the x1-axis.

Note that K is rotation invariant, thus every its hyperplane section is equivalent to
a section by a hyperplane with normal vector in the second quadrant of the (x1, x2)-
plane.

Lemma 1. Let L(ξ) = L(s, h, ξ) = sξ + h be a linear function with slope s, and let
H(L) = {x ∈ Rd : x2 = L(x1)} be the corresponding hyperplane. Then the section
K ∩H(L) is of maximal volume if and only if

(4)

y∫
−x

(f 2 − L2)(d−4)/2L = 0,

where −x and y are the first coordinates of the points at which L intersects the graphs
of −f and f respectively (see Figure 2).

x1

x2

(y, f(y))

(−x,−f(−x))

−x y
h(s)

L

f

−f

Figure 2. View of K and H(L) in (x1, x2)-plane.

Proof. Fix s > 0. Observe that the slice K∩H(L)∩Hξ of K∩H(L) by the hyperplane
Hξ = {x ∈ Rd : x1 = ξ}, −x(s) < ξ < y(s), is the (d− 2)-dimensional Euclidean ball
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{(ξ, L(ξ), x3, x4, ..., xd) : x23 + ...+ x2d ≤ r2} of radius r =
√
f 2(ξ)− L2(ξ). Hence,

(5) vold−1(K ∩H(L)) = vd−2
√

1 + s2

y(s)∫
−x(s)

(f 2(ξ)− L2(ξ))(d−2)/2dξ,

where vd−2 is the volume of the unit ball in Rd−2.
The section K ∩H(L) is of maximal volume if and only if

d

dh
vold−1(K ∩H(L)) = 0,

where in the only if part we use the Theorem of Brunn, [Ga]. Computing the deriva-
tive, we conclude that for a given s ∈ R, the section K ∩H(L) is of maximal volume
if and only if (4) holds. �

Lemma 2. Let L(s, ξ) = sξ + h(s) be a family of linear functions parameterized by
the slope s. For each L in our family, define the hyperplane H(L) by H(L) = {x ∈
Rd : x2 = L(x1)}, (see Figure 2). The corresponding family of sections is of constant
d− 1-dimensional volume if and only if

(6)

y∫
−x

(f 2 − L2)(d−2)/2 =
const√
1 + s2

, for all s > 0.

Proof. The right hand side in (5) is constant if and only if (6) holds. �

3. The case d = 4

Observe that when d = 4, the system of equations (4), (6) simplifies to
y∫

−x

L = 0, and

y∫
−x

(f 2 − L2) =
const√
1 + s2

, for all s > 0.

In this case we will show that the maximal sections correspond to level intervals,
see Proposition 1 below. We will also prove that the values of the maximal section
function MK depend on the distribution function t→ |{f > t}| only. More precisely,
we have

Theorem 3. Let d = 4, K = {x ∈ R4 : x22 + x23 + x24 ≤ f 2(x1)}, and let

u = u(s) = (− s√
1 + s2

,
1√

1 + s2
, 0, 0) ∈ S3, s > 0.

Then,

(7) MKf
(u) = π

√
1 + s2

(2

3
t2 |{f > t}|+

∞∫
t

2τ |{f > τ}|dτ
)
,

where t is the unique solution of the equation s = 2t/|{f > t}|.
In particular, if f1 and f2 are equimeasurable (i.e., for every τ > 0, we have
|{f1 > τ}| = |{f2 > τ}|), then MKf1

≡MKf2
.
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Theorem 3 is a simple consequence of the following two propositions.

Proposition 1. Let f, s, u(s) be as in Theorem 3. Then the section of maximal
volume in the direction u(s) is the one that corresponds to the line joining (−x,−t)
and (y, t), where t is such that s = 2t/|{f > t}|, 0 < t < max

ξ∈[−1,1]
f(ξ), (see Figure 3).

(−x, t)
(y, t)

(−x,−t)

−x y

L

f

−f

Figure 3. Maximal slice in R4

Proof. Fix s > 0. Since the distribution function is decreasing to 0, there exists a
unique t satisfying s = 2t/|{f > t}|. To prove that

y∫
−x

L(ξ)dξ = 0

observe that two shaded triangles on Figure 3 are congruent. �

Proposition 2. Let K, f, t, x, y be as in the previous proposition, and let the line L
be passing through the points (−x,−t), (y, t). Then (7) holds.

Proof. Note that
y∫

−x

L2 = (x+ y)
t2

3
=
t2

3
|{f > t}|,

and
y∫

−x

f 2 =

∫
{f>t}

f 2 = t2|{f > t}|+
∞∫
t

2τ |{f > τ}|dτ.

�
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Proof of Theorem 1. Let fo(ξ) =
√

1− ξ2, ξ ∈ [−1, 1]. Take a concave function
f on [−1, 1] such that f 6= fo and f is equimeasurable with fo.

4. Proof of Theorem 2

Let ϕ and ψ be two smooth functions supported on the intervals D = [1
2
− δ, 1

2
+ δ]

and E = [1− δ, 1] respectively, where 0 < δ < 1
8
. Define

f+(ξ) = fo(ξ) + εϕ(ξ)− εϕ(−ξ) + εψ(ξ),

and

f−(ξ) = fo(ξ)− εϕ(ξ) + εϕ(−ξ) + εψ(ξ),

where ε > 0 is so small that f± are concave on [−1, 1] (see Figure 4).

f+f−

0 1−1 1
2

−1
2

E−D D

Figure 4. Graph of functions f±

Define K1 = Kf+ and K2 = Kf− .
Observe that

(8) f+(ξ) = f−(ξ) ∀ξ ∈ [−1, 1] \ (D ∪ (−D)), and f+(ξ) = f−(−ξ) ∀ξ ∈ D ∪ (−D).

We can choose ε so small that K1 and K2 are very close to the Euclidean ball,
and the sections of the maximal volume of K1 and K2 are very close to the central
sections of the ball.

In particular, the intersection points x = x(s) and y = y(s) satisfy

(9) x(s), y(s) >
5

8
if s ≤

√
7

3
, and x(s), y(s) <

7

8
if s ≥

√
7

3
,

for both bodies.
First, we show that PK1 ≡ PK2 and AK1 ≡ AK2 .
Observe that we have hK1(u) = hK2(u) and ρK1(u) = ρK2(u) for all directions

u = (ξ,
√

1− ξ2, 0, 0, ..., 0) ∈ Sd−1, ξ ∈ [0, 1]\D. Observe also that hK1(u) = hK2(−u)
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and ρK1(u) = ρK2(−u) for all directions u = (ξ,
√

1− ξ2, 0, 0, ..., 0) ∈ Sd−1, ξ ∈ D.
Hence, the non-ordered pairs

{hK1(u), hK1(−u)}, and {hK2(u), hK2(−u)}
coincide for all u ∈ Sd−1, and so do the pairs

{ρK1(u), ρK1(−u)}, and {ρK2(u), ρK2(−u)}.
By the result of Goodey, Schneider and Weil, [GSW], we have PK1 ≡ PK2 . Also,

AK1(θ) =
1

d− 1

∫
Sd−1∩θ⊥

ρd−1K1
(−u) + ρd−1K1

(u)

2
dσ(u) =

1

d− 1

∫
Sd−1∩θ⊥

ρd−1K2
(−u) + ρd−1K2

(u)

2
dσ(u) = AK2(θ)

for all θ ∈ Sd−1.
It remains to show that

(10) MK1 ≡MK2 .

Assume first that d = 4. The functions f+ and f− are equimeasurable, so (10) follows
from Theorem 3.

Let now d ≥ 6 be even. Note that in this case, p = d−2
2
∈ N.

We claim that we can choose ϕ such that (10) holds. This result will be a conse-
quence of the following two propositions.

Proposition 3. If ε is small enough, then for

u = u(s) = (− s√
1 + s2

,
1√

1 + s2
, 0, 0, ..., 0) ∈ Sd−1

we have

(11) MK1(u) = MK2(u),

provided s ≥
√
7
3

.

Proof. By (9), if the sections K1∩H(L1), K2∩H(L2) are the sections of the maximal

volume, corresponding to the same slope s ≥
√
7
3

, then, they are the sections of two
symmetric (to each other) bodies corresponding to ψ = 0. Hence, (11) holds by
symmetry. �

To formulate the second proposition we will need the following result, which is a
consequence of the Borsuk-Ulam Theorem.

Lemma 3. There exists ϕ 6= 0 such that

(12)

5
8∫

− 5
8

f 2j
+ (ξ)ξldξ =

5
8∫

− 5
8

f 2j
− (ξ)ξldξ

for all j = 0, ..., p and l = 0, ..., 2(p− j).
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Proof. We will choose ϕ using the Borsuk-Ulam Theorem.
For j and l as above, consider the vector a = a(ϕ) with coordinates

aj,l(ϕ) =

5
8∫

− 5
8

f 2j
+ (ξ)ξldξ −

5
8∫

− 5
8

f 2j
− (ξ)ξldξ.

We will view this vector as an element of Rn(p) with appropriately chosen n(p).

For x = (x0, x1, ..., xn(p)) ∈ Sn(p) define ϕx =
n(p)∑
j=0

xjϕj, where ϕj are smooth not

identically zero functions with pairwise disjoint supports contained in D, and let

B : (x0, x1, ..., xn(p)) → ϕx → a(ϕx)

be our map from Sn(p) to Rn(p). By the definition of f± the map B is odd. Hence,
by the Borsuk-Ulam Theorem, one can choose x (and hence ϕx) in such a way that
a(ϕx) = 0. �

Proposition 4. Let L = L(s, h, ξ) be as above and let 0 ≤ s ≤
√
7
3

. Then,

(13)

y∫
−x

(f 2
− − L2)p =

y∫
−x

(f 2
+ − L2)p.

Moreover,

(14)

y∫
−x

(f 2
+ − L2)p−1L = 0 if and only if

y∫
−x

(f 2
− − L2)p−1L = 0.

In particular, (11) holds for 0 ≤ s ≤
√
7
3

.

Proof. We start with the proof of (13). We open parentheses and observe that all we
need to prove is

y(s)∫
−x(s)

f 2j
+ (ξ)ξldξ =

y(s)∫
−x(s)

f 2j
− (ξ)ξldξ

for all 0 ≤ s ≤
√
7
3

, and for all j = 0, ..., p and l = 0, ..., 2(p− j). By (9), this follows

from (12) since f+(ξ) = f−(ξ) for |ξ| ≥ 5
8
.

Similarly, (12) implies (14) for j = 0, ..., p− 1 and l = 0, ..., 2(p− 1− j) + 1. �

Thus, (10) follows from Propositions 3, 4. This finishes the proof of the Theorem.
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