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Abstract. In this paper we show that there is no local equatorial characterization
of zonoids in odd dimensions. This gives a negative answer to the conjecture posed
by W. Weil in 1977 and shows that the local equatorial characterization of zonoids
may be given only in even dimensions. In addition we prove a similar result for
intersection bodies and show that there is no local characterization of these bodies.

1. Introduction.

A zonoid in Rn is an origin symmetric convex body that can be approximated
(in the Hausdorff metric) by finite Minkowski sums of line segments. It turns out
that zonoids appear in many different contexts in convex geometry, physics, optimal
control theory, and functional analysis (we refer the reader to [B], [BL], [BLM], [Ga2],
[GW2], [P], [Sc1], [Sc2], [ScW]). One of the equivalent definitions of zonoids, useful in
convex geometry, leads to a notion of a projection body. An origin symmetric convex
body L in Rn is called a projection body if there exists another origin symmetric
convex body K such that the support function of L in every direction is equal to
the volume of the hyperplane projection of K orthogonal to this direction: for every
ξ ∈ Sn−1,

hL(ξ) = Voln−1(K|ξ⊥),

ξ⊥ = {y ∈ Rn : ξ · y = 0}. The support function hL(ξ) = maxx∈L ξ · x is equal to the
dual norm ‖ξ‖L∗ where L∗ stands for the polar body of L. From the above definition
and Cauchy formula (see [K], page 25), we immediately derive the following analytic
definition, which will be useful for us in this paper: An origin symmetric convex body
L ⊂ Rn is a zonoid if and only if

hL(ξ) = Cosµ(ξ) :=

∫
Sn−1

|ξ · θ|dµ(θ)

with some even positive measure µ on Sn−1. Finally, a functional analytic definition
shows that an origin symmetric convex body L ⊂ Rn is a zonoid if and only if it is a
polar body to the unit ball of a subspace of L1.
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It is well known that every origin symmetric convex body in R2 is a projection body,
but this is no longer true in Rn for n ≥ 3 (see [Sc2], [K]). It is an interesting question
how to determine if a given convex body is a zonoid or not. It is very reasonable
to assume that one can provide a strictly local characterization of zonoids. This
question was posed repeatedly (see [Sc2] for the history of the problem), however W.
Weil showed [W] that a local characterization of zonoids does not exist. In particular,
he showed that there exists an origin-symmetric convex C∞ body K ⊂ Rn, n ≥ 3,
that is not a zonoid but has the following property: for every u ∈ Sn−1 there exists
a zonoid Zu centered at the origin and a neighborhood Uu ⊂ Sn−1 of u such that the
boundaries of K and Zu coincide at all points where the exterior unit normal vectors
belong to Uu. Thus, no characterization of zonoids that involves only arbitrarily small
neighborhoods of boundary points is possible.

In 1977, W. Weil (see [W]) proposed the following conjecture about local equatorial
characterization of zonoids. Let L ⊂ Rn be an origin-symmetric convex body and
assume that for any equator σ ⊂ Sn−1, there exists a zonoid Zσ and a neighborhood
Eσ of σ such that the boundaries of L and Zσ coincide at all points where the exterior
unit vector belongs to Eσ; then L is a zonoid. Affirmative answers for even dimensions
were given independently by G. Panina [Pan] in 1988 and Goodey and Weil [GW]
in 1993, but the question was left open in odd dimensions. That was a consequence
of the fact that the inversion formulas for the cosine transform are not local in odd
dimensions.

In this paper we show that the answer to the conjecture in odd dimensions is
negative. We prove that in both cases (for odd and even dimensions) the answer can
be obtained as a consequence of the characterization of zonoids in terms of sections
of the polar body, given in [KRZ]. In even dimensions the answer follows directly
from the geometric inversion formula for the Cosine transform [KRZ]. The odd
dimensional case, on the other hand, requires much more tricky and detailed analysis
of the behavior of the inverse Cosine transform.

Our main tool is the Fourier analytic inversion formula from [GKS2] (see equation
(3), (4) below or [K], page 60). It allows to obtain the results for zonoids together
with the results about the intersection bodies. The notion of an intersection body of
star body was introduced by E. Lutwak [Lu]. K is called the intersection body of L if
the radius of K in every direction is equal to the (n− 1)-dimensional volume of the
central hyperplane section of L perpendicular to this direction: ∀ξ ∈ Sn−1,

ρK(ξ) = Voln−1(L ∩ ξ⊥),

where ρK(ξ) = max{a : aξ ∈ K} is the radial function of the body K. Passing to
polar coordinates in ξ⊥, we derive the following analytic definition of an intersection
body of star body: K is called the intersection body of L if

ρK(ξ) =
1

n− 1
<ρn−1

L (ξ) :=
1

n− 1

∫
Sn−1∩ξ⊥

ρn−1
L (θ)dθ.

Here < stands for the spherical Radon transform.
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A more general class of intersection bodies was defined by R. Gardner [Ga1] and
G. Zhang [Zh] as the closure of intersection bodies of star bodies in the radial metric
d(K, L) = supξ∈Sn−1 |ρK(ξ)− ρL(ξ)|. In this paper we will consider only C∞ smooth
intersection bodies: a body K is an intersection body if there exists an even non-
negative function f on Sn−1, such that the radial function of K is a spherical Radon
transform <f of f . Since we can always define L : ρn−1

L (θ) = (n − 1)f(θ), we will
not distinguish between intersection bodies of star bodies and intersection bodies.

We prove that the local equatorial characterization of intersection bodies is not pos-
sible in odd dimensions. Namely, we show that one can construct an origin-symmetric
convex body L ⊂ Rn, n ≥ 5 is odd, such that for any equator σ ⊂ Sn−1, there exists
an intersection body Iσ and a neighborhood Eσ of σ such that the boundaries of L and
Iσ coincide at all points of Eσ (i.e. ρL(ξ) = ρIσ(ξ) for all ξ ∈ Eσ); but nevertheless,
L is not an intersection body. On the other hand, we show that the local equatorial
characterization of intersection bodies is possible in even dimensions.

We also extend the result of W. Weil [W] to the class of intersection bodies by prov-
ing that there is no local characterization of those bodies in odd and even dimensions.
We prove that there exists an origin-symmetric convex C∞ body K ⊂ Rn, n ≥ 5, that
is not an intersection body, but has the following property: for each u ∈ Sn−1 there
exists an intersection body Iu centered at the origin and a neighborhood Uu ⊂ Sn−1

of u such that the boundaries of K and Iu coincide on Uu. In odd dimensions this is
a consequence of the lack of a local equatorial characterization of intersection bodies
mentioned above but we give an independent proof that does not distinguish between
even and odd dimensions.

Our proofs for zonoids and intersection bodies are very similar, they are based
on almost identical Fourier analytic inversion formulas for the Cosine and Radon
transforms. This is one more indication of the remarkable duality between sections
and projections (see [KRZ1]).
Acknowledgement: The authors are very grateful to Paul Goodey, Alexander
Koldobsky, Jeffrey Schlaerth and Wolfgang Weil for many useful discussions.

2. Auxiliary results

Our main tool is the Fourier transform of distributions (see [GS], [GV] and [K]
for exact definitions and properties) and the connections between the Cosine and the
spherical Radon transforms and the Fourier transform.

We start with the connection of the spherical Radon transform and the Fourier
transform. A. Koldobsky (see, for example, [K], Lemma 3.7) proved that

(1) <g(ξ) =
1

π
ĝ(ξ), ∀ξ ∈ Sn−1,

provided that g is an even homogeneous function of degree −n+1 on Rn\{0}, n > 1,
satisfying g

∣∣
Sn−1 ∈ L1(S

n−1).
An immediate consequence of this formula is the following Fourier analytic char-

acterization of intersection bodies (see [K], Theorem 4.1): An origin-symmetric star
body K is an intersection body if and only if ρK, extended to Rn as a homogenous
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function of degree −1, represents a positive definite distribution on Rn. When K is
infinitely smooth, this is equivalent to ρ̂K ≥ 0.

A very similar connection of the Cosine transform and the Fourier transform was
established in [KRZ] (see also [K], page 155):

(2) Cosg(ξ) = − 2

π
ĝ(ξ), ∀ξ ∈ Sn−1,

provided that g is an even homogeneous function of degree −n−1 on Rn\{0}, n > 1,
satisfying g

∣∣
Sn−1 ∈ L1(S

n−1).
As above, one can obtain a very similar Fourier analytic characterization of zonoids

(see [K], Theorem 8.6): An origin-symmetric star body K is a zonoid if and only if hK,
extended to Rn as a homogenous function of degree 1, represents a negative definite

distribution on Rn. When K is infinitely smooth, this is equivalent to ĥK ≤ 0.
Our next tool is a formula connecting the Fourier transform of powers of the radial

function with the derivatives of the parallel section function. Let D be an infinitely
smooth origin symmetric star body in Rn, ξ ∈ Sn−1, and let ξ⊥ = {x ∈ Rn : x·ξ = 0}.
We denote by

AD,ξ(t) = Voln−1(D ∩ {ξ⊥ + tξ}), t ∈ R,

the parallel section function of D in the direction of ξ. The following formula was
proved in [GKS2] (see [K], page 60):
For any ξ ∈ Sn−1 and k ∈ N, k 6= n− 1,

(3) ρ̂n−k−1
D (ξ) = (−1)k/2π(n− k − 1)A

(k)
D,ξ(0),

when k is even, and

(4) ρ̂n−k−1
D (ξ)=(−1)

k+1
2 2(n− k − 1)k!

∞∫
0

AD,ξ(z)− AD,ξ(0)− ...− A
(k−1)
D,ξ (0) zk−1

(k−1)!

zk+1
dz,

when k is odd.
As a consequence of equations (1), (3), and (4) with k = n − 2, we obtain the

Fourier analytic characterization of intersection bodies (see [K], page 74 for more
details).

Let L be an origin symmetric star body in Rn such that ρL is infinitely differentiable
on Sn−1. The body L is an intersection body if and only if ∀ξ ∈ Sn−1,

(5) (−1)(n−2)/2A
(n−2)
L,ξ (0) ≥ 0,

when n is even, and

(6) (−1)(n−1)/2

∫ ∞

0

AL,ξ(z)− AL,ξ(0)− ...− A
(n−3)
L,ξ (0) zn−3

(n−3)!

zn−1
dz ≥ 0,

when n is odd.
Similarly, using the duality relation hD = ρ−1

D∗ and equations (2), (3), and (4) with
k = n, one can obtain the following characterization of zonoids (see [KRZ], or [K],
page 156):
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Let L be an origin symmetric convex body in Rn such that hL is infinitely differen-
tiable on Sn−1. The body L is a zonoid (projection body) if and only if ∀ξ ∈ Sn−1,

(7) (−1)n/2A
(n)
L∗,ξ(0) ≥ 0,

when n is even, and

(8) (−1)(n+1)/2

∫ ∞

0

AL∗,ξ(z)− AL∗,ξ(0)− ...− A
(n−1)
L∗,ξ (0) zn−1

(n−1)!

zn+1
dz ≥ 0,

when n is odd.

3. There is no local equatorial characterization of intersection
bodies in odd dimensions.

To construct a counterexample, it is natural to use (6). This formula shows that
one has to use the information about the section function AL,ξ(z) of the body along
the whole range of z.

For 0 < ε < 1 and ξ ∈ Sn−1, we denote by Uε(ξ) the union of caps centered at ξ
and −ξ:

Uε(ξ) := {θ ∈ Sn−1 : |θ · ξ| ≥
√

1− ε2}.
We denote by Eε(ξ), 0 < ε < 1, the neighborhood of the equator Sn−1 ∩ ξ⊥:

Eε(ξ) := {θ ∈ Sn−1 : |θ · ξ| < ε}.
The following result is crucial for the construction of the counterexample. Its proof
is based on the fact that the inversion formula (6) is not local.

Lemma 3.1. Let n ≥ 3 be odd. Then there exists an ε > 0 and an absolute constant
c > 0 such that for any x, ξ ∈ Sn−1, there exists an even function fx,ξ satisfying
fx,ξ = 0 on Eε(x), and <−1fx,ξ ≥ c on Uε(ξ).

Proof. First, we fix x, ξ ∈ Sn−1 and find ε = ε(x, ξ) and c = c(x, ξ) satisfying
the requirement of the lemma. Then we use the compactness argument to produce
absolute ε and c.

For fixed x, ξ ∈ Sn−1 and some small ε > 0 we take two auxiliary infinitely smooth
symmetric star bodies M, Q, such that ρM = ρQ on the closure of Eε(ξ)∪Eε(x), and
ρM > ρQ otherwise. We put fx,ξ = (−1)(n−1)/2(ρM − ρQ). Then fx,ξ = 0 on Eε(x),

and ρM = ρQ on Eε(ξ) implies A
(k)
M,ξ(0) = A

(k)
Q,ξ(0), k = 0, 1, ..., n − 3. Thus, (1) and

(4) with k = n− 2 imply

<−1fx,ξ(ξ) = (−1)(n−1)/2(<−1ρM(ξ)−<−1ρQ(ξ)) =

(−1)n−1(2π)1−n(n− 2)!

∫ ∞

0

AM,ξ(z)− AQ,ξ(z)

zn−1
dz > 0,

since Q ⊆ M . We proved that for fixed x, ξ ∈ Sn−1 there exists ε′ = ε′(x, ξ) > 0 and
c′ = c′(x, ξ) such that there exists an even function fx,ξ satisfying fx,ξ = 0 on Eε(x),
and <−1fx,ξ(ξ) ≥ c′.

The function <−1fx,ξ is continuous on Sn−1 since M, Q are infinitely smooth (see
Lemma 2.4, [K]). Hence, <−1fx,ξ ≥ c > 0 on Uε′′(ξ), for some ε′′ > 0 and c = c(x, ξ).
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Put ε̃ = ε̃(x, ξ) = min(ε′, ε′′). We prove that for any x and ξ, there is ε̃ = ε̃(x, ξ) > 0
and a function fx,ξ such that fx,ξ = 0 on Eε̃(x), but <−1fx,ξ ≥ c on Uε̃(ξ), c = c(x, ξ).

Now we use the compactness argument to show that we can choose ε and c inde-
pendent of x and ξ. We choose a finite set of pairs {xi, ξi}m

i=1 such that {Uε̃i/2(xi)×
Uε̃i/2(ξi)}m

i=1 cover Sn−1 × Sn−1. We take

ε =
1

2
min

1≤i≤m
ε̃i and c = min

1≤i≤m
c(xi, ξi).

Then, for any (x, ξ), there is a pair (xi, ξi) such that (x, ξ) ∈ Uε̃i/2(xi)×Uε̃i/2(ξi) and
thereby

Eε(x)× Uε(ξ) ⊂ Eε̃i
(xi)× Uε̃i

(ξi).

Finally, we may define fx,ξ = fxi,ξi
.

�

Remark 3.2. Note that, dilating M and Q (and thus functions fx,ξ), we may assume
that c is as large as we want. By the technical reasons that will become clear later,
we take c = 2<−11. Moreover, we can assume that the set of functions {fx,ξ}x,ξ∈Sn−1

in the lemma is finite.

Let C∞
+ be the class of origin-symmetric convex bodies with C∞ boundary and

everywhere positive Gaussian curvature (see [Ga2], page 25). The following auxiliary
result seems to be well-known. It is interesting to note that it is not true without
the C∞

+ assumption though (see [Sc2], pages 117, 118, and [Ki], [KP], [Bo]).

Lemma 3.3. Let M ∈ C∞
+ and let K(t) = tBn

2 + (1− t)M be the Minkowski sum of
tBn

2 and (1−t)M , t ∈ [0, 1]. Then the map t → <−1ρK(t)(ξ), ξ ∈ Sn−1, is continuous.

Proof. We note first that for any fixed t ∈ [0, 1], the boundary ∂K(t) of K(t) is C∞.
Indeed, ∂K(t) can be parameterized as

u ∈ Sn−1 → ∇h(1−t)M(u) + tu = (1− t)∇hM(u) + tu,

where u ∈ Sn−1 → (1− t)∇hM(u) is a parametrization of (1− t)∂M . Here

∇h(1−t)M(u) = ν−1(u),

and ν : (1−t)∂M → Sn−1 is the spherical image map (see [Ga2], pages 22-26, or [Sc2],
pages 103-111). Since the Gaussian curvatures of M and Bn

2 are positive everywhere,
one can use the arguments which are similar to those in ([Sc2], pages 106-111), to
show that the map u ∈ Sn−1 → ∇hM(u) is a C∞ diffeomorphism. Hence, the map
u ∈ Sn−1 → gt(u) := (1− t)∇hM(u) + tu is also a C∞ diffeomorphism.

To show that t → <−1ρK(t)(ξ) is continuous, we pick any t ∈ [0, 1] and take any
sequence {tm}∞m=1 of points from [0, 1] converging to t. The map

u ∈ Sn−1 → ft(u) := gt(u)/|gt(u)|
is a C∞ diffeomorphism for any t ∈ [0, 1], and ftm → ft in C∞(Sn−1). Hence,
f−1

tm → f−1
t in C∞(Sn−1). Now, gt(f

−1
t (ξ)) ∈ ∂K(t) implies ρK(t)(ξ) = |gt(f

−1
t (ξ))|,

and ρK(tm) converges to ρK(t) in C∞(Sn−1). Since < is a continuous bijection of
C∞(Sn−1) to itself, ([Ga2], page 382), the lemma is proved. �
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Lemma 3.4. Let n ≥ 5. For any point ξ0 ∈ Sn−1 there exists K̃ ∈ C∞
+ such that

<−1ρ
eK(ξ) is strictly positive for all ξ 6= ±ξ0, and <−1ρ

eK(±ξ0) = 0.

Proof. Fix n ≥ 5. Then there exists M ∈ C∞
+ such that <−1ρM(ξ) is sign-changing

(see [K], Lemma 4.10 where an example of such body is constructed).
For t ∈ [0, 1], consider the Minkowski sum K(t) = tBn

2 +(1−t)M . Then <−1ρK(0)(ξ)
is sign-changing and there exists Λ′ ⊂ Sn−1 such that <−1ρK(0)(ξ) < 0, ∀ξ ∈ Λ′. On
the other hand, <−1ρK(1)(ξ) > 0, ∀ξ ∈ Sn−1. By the previous lemma the map
t → <−1ρK(t)(ξ) is continuous, and there is t0 ∈ [0, 1] such that

<−1ρK(t0)(ξ) ≥ 0,∀ξ ∈ Sn−1 and <−1ρK(t0)(ξ) = 0,∀ξ ∈ Λ ⊂ Sn−1,

for some Λ 6= ∅. Fix any ξ0 ∈ Λ. Consider an even C∞ smooth function g on Sn−1

such that
g(x) > 0,∀x 6= ±ξ0 and g(±ξ0) = 0.

For ε > 0 define a body K̃ (depending on ξ0):

<−1ρ
eK(ξ) = <−1ρK(t0)(ξ) + εg(ξ).

Note that <−1ρ
eK(ξ) is strictly positive for all ξ 6= ±ξ0, and <−1ρ

eK(±ξ0) = 0. We get

ρ
eK(x) = ρK(t0)(x) + ε<g(x).

Since <g is a C∞ function, and K(t0) ∈ C∞
+ , we may choose ε small enough so that

K̃ ∈ C∞
+ . Using the rotation argument, we can take ξ0 to be arbitrary. �

Theorem 3.5. Let n ≥ 5 be odd. There exists ε > 0 and a convex symmetric
body K that is not an intersection body, but nevertheless ∀x ∈ Sn−1 there exists an
intersection body Lx such that ρK = ρLx on Eε(x).

Proof. We define a convex body K and a family of convex bodies {Lx}x∈Sn−1 using K̃
and functions fx,ξ0 from Lemma 3.1. We fix some small ε satisfying the requirements
of Lemma 3.1 and we may assume that c = 2<−11 (see Remark 3.2). Then, define
K = Kδ,ξ0 via ρK = ρ

eK − δ, where for the moment δ > 0 is assumed to be so small
that K ∈ C∞

+ and <−1ρK is strictly positive outside Uε(ξ0). Note that <−1ρK(ξ0) < 0
and thus K is not an intersection body.

Now we define a family of convex bodies {Lx}x∈Sn−1 . Since K̃ ∈ C∞
+ , we take δ

so small that ρLx := ρ
eK − δ + δfx,ξ0 > 0 on Sn−1 and Lx is convex. Observe that

ρLx = ρK on Eε(x) for any x ∈ Sn−1.
We can assume that δ is so small that

<−1ρLx = <−1ρ
eK − δ<−11 + δ<−1fx,ξ0 > 0

on Sn−1 \ Uε(ξ0), since <−1ρ
eK > 0 on Sn−1 \ Uε(ξ0).

To show that bodies Lx are intersection bodies ∀x ∈ Sn−1, it is enough to prove
that <−1ρLx > 0 on Uε(ξ0). By Remark 3.2, minx∈Sn−1 <−1fx,ξ0 ≥ 2<−11 on Uε(ξ0),
hence

<−1ρLx = <−1ρ
eK − δ<−11 + δ<−1fx,ξ0 ≥ δ<−11 > 0

on Uε(ξ0). Moreover, δ > 0 can be chosen independently of x since the set of functions
{fx,ξ}x,ξ∈Sn−1 in Lemma 3.1 is finite.
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�

4. There is no local equatorial characterization of zonoids in odd
dimensions.

The proofs in this section are very similar (in fact, almost identical) to the ones in
the previous section.

Lemma 4.1. Let n ≥ 3 be odd. Then there exists an ε > 0 and an absolute constant
c > 0 such that for any x, ξ ∈ Sn−1, there exists an even function fx,ξ satisfying
fx,ξ = 0 on Eε(x), and Cos−1fx,ξ ≥ c on Uε(ξ).

Proof. The proof follows the same lines as that of Lemma 3.1. One has to change the
Spherical Radon transform to the Cosine transform, put support functions instead
of radial functions and thus, use section functions of polar bodies together with (2),
(4) and (8).

�

Remark 4.2. Note that dilating M and Q (and thus functions fx,ξ) we may assume
that c is as large as we want. For technical reasons, we take c = 2Cos−11. Moreover,
we can assume that the set of functions {fx,ξ}x,ξ∈Sn−1 in the lemma is finite.

Lemma 4.3. Let n ≥ 3. For any point ξ0 ∈ Sn−1 there exists a zonoid K̃ ∈ C∞
+ such

that Cos−1h
eK(ξ) is strictly positive for all ξ 6= ±ξ0, and Cos−1h

eK(±ξ0) = 0.

Proof. Fix n ≥ 3. Then there exists M ∈ C∞
+ such that Cos−1hM is sign-changing

(see [K], page 161, the Fourier Analytic solution of Shephard problem for a construc-
tion of a C∞

+ non-zonoid body).
For t ∈ [0, 1] consider the Minkowski sum K(t) = tBn

2 + (1 − t)M . Then hK(t) =
thBn

2
+ (1 − t)hM is a C∞-function, Cos−1hK(0)(ξ) is sign-changing and there exists

Λ′ ⊂ Sn−1 such that Cos−1hK(0)(ξ) < 0, ∀ξ ∈ Λ′. On the other hand, Cos−1hK(1)(ξ) >
0, ∀ξ ∈ Sn−1. The map t → Cos−1hK(t) is continuous, since Cos is a continuous bi-
jection of C∞(Sn−1) into itself, ([Ga2], page 381). Hence, there is t0 ∈ [0, 1] such
that

Cos−1hK(t0) ≥ 0, and Cos−1hK(t0)(ξ) = 0,∀ξ ∈ Λ ⊂ Sn−1

and some Λ 6= ∅. Fix any ξ0 ∈ Λ. Consider an even C∞ smooth function g on Sn−1

such that
g(x) > 0,∀x 6= ±ξ0 and g(±ξ0) = 0.

For ε > 0 define a body K̃:

Cos−1h
eK(ξ) = Cos−1hK(t0)(ξ) + εg(ξ).

Note that Cos−1h
eK(ξ) is strictly positive for all ξ 6= ±ξ0, and Cos−1h

eK(±ξ0) = 0.
Moreover,

h
eK = hK(t0) + εCosg.

Since Cosg is a continuous function and K(t0) ∈ C∞
+ , we may choose ε small enough

so that K̃ ∈ C∞
+ . Using the rotation argument, we can take ξ0 to be arbitrary. �
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Theorem 4.4. Let n ≥ 3 be odd. There exists ε > 0 and a convex body K that is not
a zonoid, but nevertheless ∀x ∈ Sn−1 there exists a zonoid Lx such that hK = hLx on
Eε(x).

Proof. We define a convex body K and a family of convex bodies {Lx}x∈Sn−1 using

the zonoid K̃ and functions fx,ξ0 from Lemma 4.1. We fix some small ε satisfying
the requirements of Lemma 4.1 with c = 2Cos−11 (see Remark 4.2). Then, define
K = Kδ,ξ0 via hK = h

eK−δ, where for the moment δ > 0 is assumed to be so small that
K ∈ C∞

+ and Cos−1hK is strictly positive outside Uε(ξ0). Note that Cos−1hK(ξ0) < 0
and thus K is not a zonoid.

Now we define a family of convex bodies {Lx}x∈Sn−1 . Since K̃ ∈ C∞
+ , we take δ

so small that hLx := h
eK − δ + δfx,ξ0 > 0 on Sn−1 and Lx is convex. Observe that

hLx = hK on Eε(x) for any x ∈ Sn−1.
We can assume that δ is so small that

Cos−1hLx = Cos−1h
eK − δCos−11 + δCos−1fx,ξ0 > 0

on Sn−1 \ Uε(ξ0), since Cos−1h
eK > 0 on Sn−1 \ Uε(ξ0).

To show that bodies Lx are zonoids ∀x ∈ Sn−1, it is enough to prove that Cos−1hLx >
0 on Uε(ξ0). By Remark 4.2, minx∈Sn−1 Cos−1fx,ξ0 > 2Cos−11 on Uε(ξ0), hence

Cos−1hLx = Cos−1h
eK − δCos−11 + δCos−1fx,ξ0 ≥ δCos−11 > 0

on Uε(ξ0), and the result follows. �

5. There is a local equatorial characterization of intersection
bodies and zonoids in even dimensions.

We consider at first intersection bodies. The proof of the following lemma is
obtained by a straightforward repetition of the argument from ([K], page 60), and
we omit the details.

Lemma 5.1. Let g(x) be an even homogeneous function of degree −1 such that g(x)
is nonnegative and infinitely smooth on Sn−1. Then

ĝ(ξ) = (−1)(n−2)/2πA
(n−2)
g,ξ (0).

where

Ag,ξ(z) =

∫
{y∈Rn: y ·ξ=z}

χ[0,1](1/g(y))dy, ξ ∈ Sn−1.

Theorem 5.2. Let n be even and let K ⊂ Rn be an origin-symmetric convex body.
Assume that for any great sphere ξ⊥∩Sn−1, there exists an intersection body Lξ and a
neighborhood Eε(ξ)(ξ) of ξ⊥∩Sn−1 such that the radial functions of K and Lξ coincide
at all points of Eε(ξ)(ξ); then K is an intersection body.

Proof. If K and Lξ are infinitely smooth, then it is enough to observe that ρK(u) =
ρLξ

(u) ∀u ∈ Eε(ξ)(ξ) implies AK,ξ(t) = ALξ,ξ(t) for sufficiently small t and apply (5).
Consider the general case. It was proved by A. Koldobsky that an original-

symmetric body K is an intersection body if and only if ρK represents a positive
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definite distribution (see, for example, Theorem 4.1 in [K]). Thus, it is enough to
show that

〈ρ̂K , ϕ〉 ≥ 0, for all nonnegative test functions ϕ on Rn.

Using the definition of the Fourier Transform of distributions (see Section 2.5, [K])
and passing to the polar coordinates, we get

〈ρ̂K , ϕ〉 = 〈ρK , ϕ̂〉 =

∫
Rn

ρK(x)ϕ̂(x)dx =

∫
Sn−1

ρK(θ)

∫ ∞

0

rn−2ϕ̂(rθ)dr dθ.

Observe that the function α(x) :=
∫ ∞

0
rn−2ϕ̂(rx)dr, x ∈ Rn−1 \ {0} is homogeneous

of degree −n + 1 and infinitely smooth. Hence, we may apply equality 4.3, page 72
together with Lemma 3.7, page 53 from [K] to claim that there exists an infinitely
smooth non-negative homogeneous of degree −1 function

g(x) =
1

2

∫
R

ϕ(tx)dt, such that ĝ(θ) = α(θ) ∀θ ∈ Sn−1.

Thus, ∫
Sn−1

ρK(θ)

∫ ∞

0

rn−2ϕ̂(rθ)dr dθ =

∫
Sn−1

ρK(θ)ĝ(θ)dθ.

Using a partition of unity on Sn−1 together with homogeneity of g, we can write

g(θ) =
m∑

j=1

gj(θ) =
m∑

j=1

1

2

∫
R

ϕj(tθ)dt, θ ∈ Sn−1,

where supp gj

∣∣
Sn−1 ⊂ Uεj

(ξj) are small enough.

By the previous lemma, supp gj

∣∣
Sn−1 ⊂ Uεj

(ξj) implies supp ĝj

∣∣
Sn−1 ⊂ Eεj

(ξj).
Hence,

〈ρ̂K , ϕ〉 =
m∑

j=1

∫
Sn−1

ρK(θ)ĝj(θ)dθ =
m∑

j=1

∫
Eεj (ξj)

ρK(θ)ĝj(θ)dθ =

m∑
j=1

∫
Eεj (ξj)

ρLξj
(θ)ĝj(θ)dθ =

m∑
j=1

∫
Sn−1

ρLξj
(θ)ĝj(θ)dθ =

m∑
j=1

〈ρ̂Lξj
, ϕj〉 ≥ 0.

�

The following result was obtained independently by G. Panina [Pan] and P. Goodey
and W. Weil [GW]. Its proof could be also obtained by the arguments similar to those
in the previous proof, and we omit it.

Theorem 5.3. Let n be even and let K ⊂ Rn be an origin-symmetric convex body.
Assume that for any great sphere ξ⊥ ∩ Sn−1, there exists a zonoid Zξ and a neigh-
borhood Eε(ξ)(ξ) of ξ⊥ ∩ Sn−1 such that the boundaries of K and Zξ coincide at all
points where the exterior unit vector belong to Eε(ξ)(ξ); then K is a zonoid.
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6. There is no local characterization of intersection bodies.

In this section we prove the analog of the result of W. Weil [W] for zonoids. Our
proof is different from the one of W. Weil. We show that, given x, ξ ∈ Sn−1, one can
construct a function f which is zero around x, but such that the inverse spherical
Radon transform of f is positive around ξ. For convenience of the reader we split
the proof of this auxiliary result (see Lemma 6.4) into four statements. We will use
the following notation

=ε,x = {f ∈ C∞(Sn−1) : f = 0 on Uε(x)}, 0 < ε < 1.

Lemma 6.1. Let n ≥ 3, and let ξ, x ∈ Sn−1 be two orthogonal vectors. Assume
that any f ∈ =1/4,x satisfies <−1f(ξ) = 0. Then for any pair of orthogonal vectors
u, v ∈ Sn−1 we have f ∈ =1/4,u implies <−1f(v) = 0.

Proof. For any two pairs of orthogonal unit vectors (ξ, x), (u, v) there exists a rotation
ρ ∈ SO(n) satisfying u = ρ(x), v = ρ(ξ). Since <−1 commutes with rotations, the
result follows. �

Lemma 6.2. Let n ≥ 3, and let ξ ∈ x⊥. Assume that any f ∈ =1/4,x satisfies
<−1f(ξ) = 0. Then <−1(=1/2,x) ⊂ =1/4,ξ.

Proof. Take any u ∈ U1/4(ξ). Let ρ ∈ SO(n), ρ(ξ) = u, where ξ is rotated into u
inside U1/4(ξ) in the plane containing ξ, u and the origin. Then ρ(x) ∈ U1/4(x), and
=1/2,x ⊂ =1/4,ρ(x). Moreover, <−1f(u) = 0 since <−1 commutes with rotations. The
point u was chosen arbitrarily in U1/4(ξ), hence <−1(=1/2,x) ⊂ =1/4,ξ. �

Lemma 6.3. Let n ≥ 3, and let ξ ∈ x⊥. Then there exists a function f = fx,ξ on
Sn−1 satisfying fx,ξ = 0 on U1/4(x), but <−1fx,ξ(ξ) 6= 0.

Proof. Assume the contrary. Then <−1(=1/2,x) ⊂ =1/4,ξ by Lemma 6.2. Take any
vector y ∈ Sn−1, and find a vector q ∈ x⊥ ∩ y⊥. Let ρ ∈ SO(n) be such that
ρ(x) = x, ρ(ξ) = q. Observe that f ∈ =ε,x implies f(ρ(·)) ∈ =ε,x. Since <−1

commutes with rotations, <−1(=1/2,x) ⊂ =1/4,ξ yields <−1(=1/2,x) ⊂ =1/4,q. Take two
pairs of orthogonal vectors (x, q) and (q, y). By Lemma 6.1, we have <−2f(y) = 0.
Thus, <−2f ≡ 0, a contradiction. �

Lemma 6.4. Let n ≥ 3. Then there exists an ε > 0 and an absolute constant c > 0
such that for any x, ξ ∈ Sn−1, there exists an even function fx,ξ satisfying fx,ξ = 0
on Uε(x), and <−1fx,ξ ≥ c on Uε(ξ).

Proof. We fix points x and ξ, and provide an ε > 0, and c > 0 depending on x, ξ
such that there is a function fx,ξ satisfying fx,ξ = 0 on Uε(x), and <−1fx,ξ ≥ c > 0 on
Uε(ξ). Then we use the compactness argument to prove the statement of the lemma.

Let ξ 6∈ x⊥. Then there exists an ε > 0, such that ξ /∈ Eε(x). For any function g
the values of <g on Uε(x) depend only on the values of g on Eε(x). Hence, we may
consider an even C∞-function g such that g(±ξ) > 0 and g(ν) = 0, for ν ∈ Eε(x)
and define fx,ξ = <g(x).

Let ξ ∈ x⊥. Then, the previous lemma implies the existence of ε = ε(x, ξ) = 1/8,
and a function f = fx,ξ on Sn−1 satisfying fx,ξ = 0 on Uε(x), but <−1fx,ξ(ξ) > 0
(change the sign of fx,ξ if necessary).
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Thus, we proved that for any x and ξ, there is ε′ = ε′(x, ξ) > 0 and there is a
function fx,ξ such that fx,ξ = 0 on Uε′(x), but <−1fx,ξ(±ξ) ≥ c′, c′ = c′(x, ξ) > 0.
From the continuity of the function <−1fx,ξ we get that <−1fx,ξ ≥ c, c = c(x, ξ) > 0
on Uε′′(ξ), for some ε′′ > 0. Take ε̃ = ε̃(x, ξ) = min(ε′, ε′′). We show that for any
x and ξ, there is ε̃ = ε̃(x, ξ) > 0 and there is a function fx,ξ such that fx,ξ = 0 on
Uε̃(x), but <−1fx,ξ ≥ c on Uε̃(ξ), c = c(x, ξ) > 0.

Now we use the compactness argument to prove that we can choose an ε and c
independent of x and ξ. We choose a finite set of {xi, ξi}m

i=1 such that {Uε̃i/2(xi) ×
Uε̃i/2(ξi)}m

i=1 covers Sn−1 × Sn−1. We take

ε =
1

2
min

1≤i≤m
ε̃i and c = min

1≤i≤m
c(xi, ξi).

Then for any (x, ξ) there is a (xi, ξi) such that

Uε(x)× Uε(ξ) ⊂ Uε̃i
(xi)× Uε̃i

(ξi),

and we may define fx,ξ = fxi,ξi
.

�

Theorem 6.5. Let n ≥ 5. There exists a convex body K that is not an intersection
body, such that ∀x ∈ Sn−1 there exists an ε(x) and an intersection body Lx such that
ρK = ρLx on Uε(x)(x).

Proof. Repeat the proof of Theorem 1. �
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