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Abstract. In this paper we give necessary and sufficient conditions for a harmonic
vector and all its partial derivatives to belong to Hp(Rn+1

+ ) for all p > 0. We
also obtain the Hardy-Littlewood-Sobolev imbedding-type result, formulated on
the language of the conjugate harmonic functions.

1. Introduction and statements of main results

Let f(z) be an analytic function in the unit disc D = {z : |z| < 1} and let

(1) Mp(r, f) =
( 1

2π

2π
∫

0

|f(reiθ)|pdθ
)1/p

, p > 0, 0 ≤ r < 1.

It is well-known (see, for example, [17], [8], and references therein) that f ∈ Hp(D),
p > 0, if Mp(r, f) ≤ C < ∞. It is also well-known that f ∈ Hp(D) if and only
if a subharmonic function |f(z)|p has a harmonic majorant. Using the Riemann
conformal mapping theorem one can define the Hardy space on any domain U having
more than one point in its boundary. An analytic function in a domain U belongs
to Hp(U), p > 0, if and only if a subharmonic function |f(z)|p has a harmonic
majorant in U. In particular, this is true in the case of the upper half-plane domain
U = R2

+ = {z : Imz > 0}. On the other hand, if we want to define Hp(R2
+) in terms

of the integral everages of type (1), one has to take into account a weight appearing
after a change of variables in the integral. This is one of the reasons for an appearence
of another natural class of functions, hp(R2

+), [6].
An analytic function f ∈ hp(R2

+), p > 0, if

Mp(y, f) =
(

∞
∫

−∞

|f(x + iy)|pdx
)1/p

≤ C < ∞.

It is clear that not every bounded analytic function in the upper half-plane belongs
to hp(R2

+). Moreover, the above condition is only sufficient for the existence of
a harmonic majorant for |f(x + iy)|p, and analytic functions from hp(R2

+) loose
several important properties that analytic functions from Hp(D) have. For example,
if f ∈ Hp(D), then f ∈ Hq(D) for all 0 < q < p. For f ∈ hp(R2

+), the statement
f ∈ Hq(R2

+), 0 < q < p, is no longer true without additional assumptions on f .
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The reason for this is very simple, f is bounded in |z| ≤ r0, 0 < r0 < 1, and
f ∈ Hq(|z| ≤ r0), for all q > 0, since Mp(r, f) ≤ C(r0), 0 < r ≤ r0. This is why the
class Sp(R2

+), p > 0, comes into play, [7], [1].
An analytic function f ∈ Sp(R2

+), p > 0, if for any y0 > 0 there exists a constant
C(y0, f), such that Mp(y, f) ≤ C(y0) ∀y ≥ y0. In particular, if C is independent of
y0, then f(x+ iy) ∈ hp(R2

+). Now, if f ∈ Sp(R2
+), p > 0, and y → ∞, then f(x+ iy)

converges to zero uniformly with respect to x, and f ∈ Sq(R2
+) ∀q ≥ p. But again,

the condition f ∈ Sp(R2
+) does not imply f ∈ Sr(R2

+), 0 < r ≤ p. Consider, for
example, f(x + iy) = u(x, y) + iv(x, y), where

u(x, y) =
x

x2 + y2
, v(x, y) =

y

x2 + y2
.

We have f ∈ Sp(R2
+), p > 1, but f /∈ Sq(R2

+), 0 < q ≤ 1.
Thus, in the case of the upper half-plane, one can consider different problems con-

cerning classes Hp(R2
+), hp(R2

+), Sp(R2
+). In particular, we have hp(R2

+) ⊂ Sp(R2
+),

and hp(R2
+) ⊂ Hp(R2

+).
In the case of the half-space, Rn+1

+ ≡ Rn × (0,∞), classes hp(Rn+1
+ ), Sp(Rn+1

+ ),
(all definitions are given in Section 2), were considered by Solomentsev [11], and by
Stein and Weiss, [13], [15]. One of the results, proved in [13] reads as follows: if
F = (U(x, y), V1(x, y), V2(x, y), ..., Vn(x, y)) is a harmonic vector, (x, y) ∈ Rn+1

+ , then
|F |p is subharmonic, provided p ≥ (n − 1)/n. This leads to additional technical
difficulties for p < (n − 1)/n.

Finally, Fefferman and Stein [4], introduced the classes of gradients Hp(Rn+1
+ ), p >

0, of ∇kF , and showed that |∇kF |p is subharmonic provided p ≥ (n−1)/(n+k −1),
k ∈ N. They also proved that Hp(Rn+1

+ ) = hp(Rn+1
+ ) for p ≥ (n−1)/n. Nevertheless,

Wolff [16] showed that Hp(Rn+1
+ ) $ hp(Rn+1

+ ) for p < (n − 1)/n.
In this article we find new relations between the conjugate harmonic functions in

Rn+1
+ and their partial derivatives. We study the following problem: what can we

say about conjugate harmonic functions, provided we are given certain restrictions,
imposed on partial derivatives of a harmonic vector F = (U, V1, V2, ..., Vn). We give
necessary and sufficient conditions for a harmonic vector and all its partial derivatives
up to the order k to belong to Hp(Rn+1

+ ), p > 0. Our first results are

Theorem 1. Let k ∈ N, p > 0. The harmonic vector F = (U, V1, ..., Vn) and all its
partial derivatives of the order ≤ k belong to Hp if and only if

(2) 1) Mp(y + 1, F ) ≤ C, 2)

∫

Rn

(

sup
η≥y

|Dk
n+1U(x, η)|

)p

dx ≤ C.

Theorem 2. Let 0 < p < q. The harmonic vector F = (U, V1, ..., Vn) and all its
partial derivatives of the order ≤ k belong to H r, p ≤ r ≤ q, if and only if

(3) 1) Mp(y + 1, F ) ≤ C, 2)

∫

Rn

(

sup
η≥y

|Dk
n+1U(x, η)|

)q

dx ≤ C.

Conditions (2) allow to obtain the Hardy-Littlewood-Sobolev imbedding-type re-
sult, formulated on the language of the conjugate harmonic functions. Results of
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this type were obtained by Fefferman-Stein, [4], Flett [5], and others (see [12] and
references therein). For us the case of small p > 0 is of special interest.

Theorem 3. Let k ∈ N, p > 0, and let F be as in Theorem 1.
a) If 0 < kp < n, then F ∈ Hr ∀r : p ≤ r ≤ np/(n − kp). If kp ≥ n, then F ∈ Hr

∀r ≥ p.
b) Let k > 1, 1 ≤ m ≤ k − 1, m ∈ N. If 0 < (k − m)p < n, then all partial

derivatives of F of the order m belong to H r ∀r : p ≤ r ≤ np/(n − (k − m)p). If
(k − m)p ≥ n, then all partial derivatives of F of the order m belong to H r ∀r ≥ p.

One of the methods of the proof of Theorems 1 and 2 is the application of classes
Sp(Rn+1

+ ) together with the Lagrange mean-value Theorem. We note that the first
condition in (2) is natural not only because of the decomposition of the function into
two parts, “Sp(Rn+1

+ )” and “Hp(Rn+1
+ )” (see Section 5). In fact, it (together with

the second condition) implies Mp(y + y0, F ) ≤ C(y0) ∀y0 > 0. Moreover, the next
result shows that it is necessary.

Theorem 4. Let p > 0, and let F be a harmonic vector such that

1)F ⇒x
y→∞ 0, 2)Mp(y,Dn+1U) ≤ C, 3) |Dn+1U(x, y)| ≤ C.

Then
a) F ∈ Hr, r > np/(n − p), provided 0 < p < n.
b) If p ≥ n, then there exist conjugate harmonic functions such that F /∈ H r,

r > 0.

The paper is organized as follows. In section 2 we give all necessary definitions
and auxiliary results used in the sequel. Section 3 is devoted to results needed for
the proof of Theorem 1, and in section 4 we prove Theorem 1. In sections 5, 6 we
prove Theorem 2. This result is used as a tool for the proof of Theorem 3. Auxiliary
results for the proof of Theorem 3 are given in section 7. We prove Theorem 3 in
section 8. The last section is devoted to the proof of Theorem 4. For convenience of
the reader we split our proofs into elementary Lemmata.

2. Auxiliary results

We begin with the definition of hp(Rn+1
+ ).

Let U(x, y) be a harmonic function in Rn+1
+ ≡ Rn × (0,∞). We say that the

vector-function V (x, y) = (V1(x, y), ..., Vn(x, y)) is the conjugate of U(x, y) in the
sense of M. Riesz [12], [14], if Vk(x, y), k = 1, ..., n are harmonic functions, satisfying
the generalized Cauchy-Riemann conditions:

∂U

∂y
+

n
∑

k=1

∂Vk

∂xk

= 0,
∂Vi

∂xk

=
∂Vk

∂xi

,
∂U

∂xi

=
∂Vi

∂y
, i 6= k, k = 1, ..., n.

If U(x, y) and V (x, y) are conjugate in Rn+1
+ in the above sense, then the vector-

function

F (x, y) = (U(x, y), V (x, y)) = (U(x, y), V1(x, y), ..., Vn(x, y))

is called a harmonic vector.
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Define

Mp(y) = Mp(y, F ) =
{

∫

Rn

|F (x, y)|pdx
}1/p

, p > 0.

Definition 1 ([1], [7]). We say that F (x, y) ∈ Sp(Rn+1
+ ), p > 0 if for any y0 > 0

there exists a constant C(y0, F ), such that ∀y ≥ y0, Mp(y, F ) ≤ C(y0). In particular,
if C is independent of y0, then F (x, y) ∈ hp(Rn+1

+ ).
Now we define the space Hp(Rn+1

+ ). We follow the work of Fefferman and Stein[4].
Let U(x, y) be a harmonic function in Rn+1

+ , and let Uj1j2j3 ...jk
denote a component

of a symmetric tensor of rank k, 0 ≤ ji ≤ n, i = 1, ..., n. Suppose also that the trace
of our tensor is zero, meaning

n
∑

j=0

Ujjj3 ...jk
(x, y) = 0, ∀j3, ..., jk.

The tensor of rank k +1 can be obtained from the above tensor of rank k by passing
to its gradient:

Uj1j2 ...jkjk+1
(x, y) =

∂

∂xjk+1

(Uj1j2j3 ...jk
(x, y)), x0 = y, 0 ≤ jk+1 ≤ n.

Definition 2 ([4]).We say that U(x, y) ∈ Hp(Rn+1
+ ), p > 0, if there exists a tensor

of rank k of the above type with the properties:

U0...0(x, y) = U(x, y), sup
y>0

∫

Rn

(

∑

(j)

U2
(j)(x, y)

)p/2

dx < ∞, (j) = (j1, ...jk).

It is well-known that the function
(

∑

(j)

U2
(j)(x, y)

)p/2

is subharmonic for p ≥ pk =

(n − k)/(n + k − 1), see [3],[4],[14].
We will use the “radial” and nontangential maximal functions:

F+(x) = sup
y>0

|F (x, y)|, Nα(F )(x0) = sup
(x,y)∈Γα(x0)

|F (x, y)|.

Here

Γα(x0) = {(x, y) ∈ Rn+1
+ : |x − x0| < αy}, α > 0,

is an infinite cone with the vertex at x0. It is well-known [4] that

F (x, y) ∈ Hp(Rn+1
+ ) ⇐⇒ Nα(F )(x) ∈ Lp ⇐⇒ F +(x) ∈ Lp, p > 0.

We also define the weak maximal function

WF (x, y) = sup
ζ≥y

|F (x, ζ)|, y > 0.

The above expression is understood as folows: we fix x, and for fixed y we find the
supremum over all ζ ≥ y.

We will repeatedly use the following results.
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Lemma 1. ([4], p.173). Suppose u(x, y) is harmonic in Rn+1
+ , and for some p, 0 <

p < ∞,

sup
y>0

∫

Rn

|u(x, y)|pdx < ∞,

then

(4) sup
x∈Rn

|u(x, y)| ≤ Ay−n/p, 0 < y < ∞.

Theorem 5. ([5], p. 268). Let 0 < p ≤ 1, k ∈ N, and let u : Rn+1
+ → R be a

harmonic function such that

u(x, t) ⇒x
y→∞ 0, Kk,p ≡

∫

R
n+1
+

tkp−1|Dk
n+1u(x, t)|pdxdt < C.

Then u(x, 0) = lim
t→0+

u(x, t) exists for almost all x ∈ Rn, and for all t ≥ 0,

∫

Rn

|u(x, t)|pdx ≤ AC(k, n, p)Kk,p.

Theorem 6. ([5], p. 269). Let m ∈ N, p ≥ (n− 1)/(m+n− 1) (if n = 1 we suppose
p > 0), and let u : Rn+1

+ → R be harmonic. Then, for all t > 0,

∫

Rn

|∇mu(x, t)|pdx ≤ A(m,n, p)t−mp−1

3t/2
∫

t/2

ds

∫

Rn

|u(x, t)|pdx.

Corollary 1. ([5], p. 270). Let p,m be as in Theorem 6, let b > 0, and let u :
Rn+1

+ → R be a harmonic function such that for all t > 0
∫

Rn

|u(x, t)|pdx ≤ Ct−b.

Then
∫

Rn

|∇mu(x, t)|pdx ≤ A(b,m, n, p)Ct−b−mp, (t > 0).

In fact, the choice of p in Theorem 5 and Corollary 1 may be independent of m
(see Lemma 2).

Theorem 7. [10]. Let p > 0 and let F (x, y) = (U, V1, ..., Vn) be a harmonic vector
satisfying

(5) 1)Vi(x, y) ⇒x
y→∞ 0, i = 1, ..., n, 2)Mp(y, U) ≤ C, 3) |U | ≤ C.

Then F ∈ Hr, r > p.
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Notation. We denote by Dk
i f(x, y) the partial derivative of the function f of the

order k with respect to xi, i = 1, 2, ..., n + 1. M(f)(x) denotes the usual Hardy-
Littlewood maximal function of f(x). The notation f(x, y) ⇒x

y→∞ 0 means that

f(x, y) converges to 0 uniformly with respect to x, provided y → ∞, ∇kf(x) =

(∂kf(x)

∂xk
1

, ..., ∂kf(x)
∂xk

n
). Everywhere below the constants A(k, n), C,K depend only on the

parameters pointed in parentheses, and may be different from time to time.

3. Auxiliary lemmata for the proof of Theorem 1.

The next result shows that in Theorem 6 and Corollary 1 the choice of p > 0 may
be independent on m ∈ N. We include it here for convenience of the reader.

Lemma 2. Let p > 0 and let F = (U, V1, ..., Vn) be such that Vi ⇒x
y→∞ 0, i = 1, ..., n,

Mp(y, U) ≤ C. Then

Mp(y,∇kF ) ≤ ACy−k, k ∈ N.

Proof. By induction on k. Let k = 1. Fix p > 0 and let l = inf{j ∈ N : p ≥
(n − 1)/(j + n − 1)}. Let φij(x, y) be a coordinate of ∇Vi(x, y), j = 1, ..., n + 1,
xn+1 = y, i = 0, ..., n, V0 = U . Since ∇Vi(x, y) ⇒x

y→∞ 0, we may use the following
relation (see [5] or [4])

φij(x, y) =
1

(2l − 2)!

∞
∫

y

(s − y)2l−2D2l−1
n+1 φij(x, s)ds =

1

(2l − 2)!

∞
∫

0

s2l−2D2l−1
n+1 φij(x, s + y)ds.

We have |φij(x, y)| ≤ hij(x, y), where

hij(x, y) ≡ 1

(2l − 2)!

∞
∫

0

s2l−2|∇lDl−1
n+1φij(x, s + y)|pds.

Theorem 3 of[5] implies (take w = ∇lDl−1
n+1φij, a = 2l − 1, A = A(l, n, p)),

∫

Rn

|φij(x, y)|pdx ≤
∫

Rn

|hij(x, y)|pdx ≤ A

∞
∫

0

s(2l−1)p−1ds

∫

Rn

|∇lDl−1
n+1φij(x, s + y)|pdx.

Since Dl−1
n+1φij(x, y) is the l−th derivative of Vi, we use Theorem 6 to get

(6)

∫

Rn

|∇lDl−1
n+1φij(x, y)|pdx ≤

∫

Rn

|∇2lF (x, y)|pdx ≤ C y−2lp.

This gives

∫

Rn

|φij(x, y)|pdx ≤ A(l, n, p)C

∞
∫

0

s(2l−1)p−1(s + y)−2lpds = A(l, n, p)Cy−p,
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and the first induction step is proved.
Assume that the statement is true for k − 1. Then Mp(y,∇k−1F ) ≤ ACy−(k−1).

To prove it for k we define l as above and apply Corollary 1 with b = k − 1, m = 1,
u = ∇k−1F . �

Lemma 3. Let DiU ⇒x
y→∞ 0, i = 1, ..., n, and let

(7) Mp(y,Dn+1U) ≤ Cy−1

for some p > 0. Then

(8)

∫

Rn

(

sup
y>0

|Dn+1U(x, y + y0)|
)p

dx ≤ AC, ∀y0 > 0, A = A(n, p, y0).

Proof. Let p > 1. Then (see [12])

‖ sup
y>0

|Dn+1U(·, y + y0)|‖p ≤ CMp(y + y0,Dn+1U) ≤ AC, A = A(n, p, y0).

Now let 0 < p ≤ 1. Assume that

(9)

∞
∫

0

∫

Rn

sp−1|∇2U(x, s + y0)|pdxds ≡
1

∫

0

∫

Rn

+

∞
∫

1

∫

Rn

< C(y0) < ∞.

Applying Lemma 2, Theorem 5 (with Dn+1U instead of u and k = 1) and the tensor
representation of Dn+1U from [4] we have Dn+1U(x, y + y0) ∈ Hp. Thus, we prove
(9). By Theorem 6 , (7) yields

(10) Mp(y,∇2U) ≤ ACy−2.

This gives (9). Indeed, the first integral in the right-hand side of (9) is finite, since

Mp(y + y0,∇2U) ≤ AC(y + y0)
−2 ≤ AC(y0), ∀y0 > 0.

On the other hand,

∞
∫

1

sp−1ds

∫

Rn

|∇2U(x, s + y0)|pdx ≤ AC

∞
∫

1

sp−1(s + y0)
−2pds ≤ AC(y0) < ∞.

�

Lemma 4. Let 0 < p, and let F = (U, V1, ..., Vn) be a harmonic vector in Rn+1
+ . If

Mp(y +1, F ) ≤ C, then Vi (and all its partial derivatives) ⇒x
y→∞ 0, i = 0, ..., n, V0 =

U .

Proof. Denote H = Vi, and let Bt(x, t+1) be a ball of radius t, centered at (x, t+1).
Then Lemma 1 gives

|H(x, t + 1)|p ≤ A(p)t−n−1

∫

Bt(x−z,s−(t+1))

|H(z, s)|pdzds ≤
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A(p)t−n−1

2t+1
∫

1

ds

∫

|z−x|Rn <t

|H(z, s)|pdz ≤ 2A(p)t−n
(

sup
s≥1

∫

Rn

|H(z, s)|pdz
)

≤

2A(p)t−n
(

sup
t≥0

∫

Rn

|H(z, t + 1)|pdz
)

≤ ACt−n.

Thus, sup
x∈Rn

|H(x, t + 1)| ≤ ACt−n/p. �

Lemma 5. F = (U, V1, ..., Vn) ∈ Hp if and only if Vi(x, y) ⇒x
y→∞ 0, i = 1, ..., n and

(11)

∫

Rn

(

sup
η≥y

|U(x, η)|
)p

dx ≤ C.

Proof. The part only if is obvious. The part if follows by the reasons which are
similar to those in Theorem 9 of [4] and the Fatou lemma. �

Lemma 6. Let F = (U, V1, ..., Vn) be a harmonic vector such that

(12) 1) Mp(y + 1, F ) ≤ C, 2) Mp(y,Dn+1U) ≤ Cy−1.

Then

(13)

∫

Rn

(

sup
y>0

|F (x, y + y0)|
)p

dx ≤ AC, ∀y0 > 0, A = A(n, p, y0).

Proof. Let H = Vi, i = 0, 1, ..., n, V0 = U . By the mean-value theorem,

sup
y>0

|H(x, y + y0)| ≤ sup
y>0

|H(x, y + y0 + 1)| + sup
y>0

|Dn+1H(x, y + y0)|.

By virtue of Lemma 3 it is enough to show that

(14)

∫

Rn

(

sup
y>0

|H(x, y + y0 + 1)|
)p

dx ≤ AC, ∀y0 > 0, A = A(n, p, y0).

Let p > 1. Then (14) follows from 1) and the Lp−boundedness of the maximal
function. Let 0 < p ≤ 1. Then (14) is a consequence of Theorem 5 (take t = y+y0+1
and repeat the arguments similar to those in Lemma 3). �

4. Proof of Theorem 1.

The part if is obvious. We show only if by proving subsequently that ∇kF ∈ Hp,
∇k−1F ∈ Hp, ..., F ∈ Hp. First of all, Lemmata 4, 5 give ∇kF ∈ Hp. Let us show
that ∇k−1F ∈ Hp. It is enough to prove that Dk−1

n+1U(x, y) ∈ Hp. By the mean-value
theorem we have

(15) sup
y>0

|Dk−1
n+1U(x, y)| ≤ sup

y>0
|Dk−1

n+1U(x, y + 1)| + sup
y>0

|Dk
n+1U(x, y)|,
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and it is enough to show that sup
y>0

|Dk−1
n+1U(x, y + 1)| ∈ Lp. In fact, we have some

more, namely

(16)

∫

Rn

(

sup
y>0

|Dk−1
n+1U(x, y + y0)|

)p

dx < C(y0) ∀y0 > 0.

To prove (16) we apply the mean-value theorem again, and write

sup
y>0

|Dk−1
n+1U(x, y + y0)| ≤ sup

y>0
|Dk−1

n+1U(x, y + y0 + 1)| + sup
y>0

|Dk
n+1U(x, y + y0)|.

Then ∇kF ∈ Hp implies
∫

Rn

(

sup
y>0

|Dk
n+1U(x, y + y0)|

)p

dx < C(y0).

On the other hand, we have
∫

Rn

(

sup
y>0

|Dk−1
n+1U(x, y + y0 + 1)|

)p

dx < C(y0).

This follows from Theorem 6, the estimate

(17)

∫

Rn

∣

∣

∣
∇jF (x, y + y0 + 1)

∣

∣

∣

p

dx ≤ AC(y + y0)
−jp, 0 ≤ j ≤ k,

and the reasons which are similar to those in Lemma 3. Thus, we have (16) and
∇k−1F ∈ Hp.

We repeat the argument and get ∇iF ∈ Hp, 0 < i ≤ k. Now let i = 0. Then the
first condition of our theorem, the fact that ∇F ∈ Hp, and the estimate

|U(x, y)| ≤ |U(x, y + 1)| + sup
y>0

|Dn+1U(x, y)|

give F ∈ hp. Then we may apply Theorem 6 and Lemma 6 to obtain (13). To show
that F ∈ Hp it remains to use

sup
y>0

|U(x, y)| ≤ sup
y>0

|U(x, y + 1)| + sup
y>0

|Dn+1U(x, y)|.

The proof of the theorem is complete.

5. Auxiliary results for the proof of Theorem 2.

Let Vi be components of the harmonic vector F = (U, V1, ..., Vn). By the mean-
value theorem,

(18) Vi(x, y) = Vi(x, y + 1) − Dn+1Vi(x, y + θi), 0 < θi(x, y) < 1.

Lemma 7. We have

(19) sup
y>0

|Vi(x, y)| ≤ sup
y>0

|Vi(x, y + 1)| + sup
y>0

|Dn+1Vi(x, y + θi)|,

(20) sup
y>0

|Dn+1Vi(x, y + θi)| ≤ 2F +(x),
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where i = 0, ..., n, V0 = U .

Lemma 8. Let F = (U, V1, ..., Vn) ∈ Hq and let θi be as in (18), i = 0, ..., n. Then

(21)

∫

Rn

(

sup
y>0

|DiU(x, y + θi)|
)q

dx ≤ AC.

Proof. By (20) of Lemma 7, we have

(22)

∫

Rn

(

sup
y>0

|Dn+1Vi(x, y + θi)|
)q

dx ≤ AC.

To get the desired result we apply the Cauchy-Riemann equations DiU(x, y) =
Dn+1Vi(x, y). �

The next result uses the observation that θi > 0 on a set, controlled by estimate
(4).

Lemma 9. Let 0 < p < q and let F (x, y) = (U(x, y), V1(x, y), ..., Vn(x, y)) be a
harmonic vector in Rn+1

+ . Then conditions

(23) 1) Mp(y + 1, F ) ≤ C, 2) Mp(y,Dn+1U) ≤ Cy−1, 3) F ∈ Hq

imply F ∈ hp.

Proof. Let θi be as in (18). Due to (8) and condition 1) it is enough to show that
sup
y>0

|Dn+1Vi(·, y + θi(·, y))| ∈ Lp(Rn). This will follow from the Cauchy-Riemann

equations and

(24)

∫

Rn

(

sup
y>0

|DiU(x, y + θi(x, y))|
)p

dx < ∞.

Thus, we prove (24). Condition 3) and Lemma 1 imply

(25) sup
x∈Rn

|DiU(x, y + θi)| ≤ sup
x∈Rn

AC

(y + θi)1+n/q
≤ AC(y + αi(y))−1−n/q,

where αi(y) = inf
x∈Rn

θi(x, y). Define

Li = {x ∈ Rn : sup
y>0

|DiU(x, y + θi)| ≤ sup
y>0

AC

(y + αi(y))1+n/q
≤ 1}.

Then ∀x ∈ CLi (the complement of Li) we have sup
y>0

|DiU(x, y + θi)| > 1. Then

(26)

∫

CLi

(

sup
y>0

|DiU(x, y+ θi(x, y))|
)p

dx ≤
∫

Rn

(

sup
y>0

|DiU(x, y + θi(x, y))|
)q

dx ≤ AC

due to condition 3) and Lemma 8.
We estimate the integral in (24) over Li. Observe that for fixed x ∈ Li,

sup
y>0

|DiU(x, y + θi(x, y))| ≤ sup
y>0

|DiU(x, y + αi(y))|,
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and αi ≡ inf
y>0

αi(y) > 0. We put γ = min
i=0,...,n

αi > 0, and take any 0 < y0 ≤ γ. Then

(27)

∫

Li

(

sup
y>0

|DiU(x, y + θi(x, y))|
)p

dx ≤
∫

Rn

(

sup
y>0

|∇U(x, y + y0)|
)p

dx ≤ AC.

Indeed, condition 3) and Theorem 6 imply Vi(x, y) ⇒x
y→∞ 0. The same is true for

all partial derivatives of Vi, i = 0, ..., n, V0 = U . Now the second inequality in (27)
follows from 2) and Lemma 3. Taking into account (27), (26), we get (24). �

The next result uses the observation that under conditions (23) the supremum
sup
y>0

|F (x, y)| is reached at the boundary.

Theorem 8. Let 0 < p < q and let F = (U, V1, ..., Vn) be a harmonic vector in Rn+1
+ .

Then F ∈ Hr ∀r : p ≤ r ≤ q if and only if conditions (23) are valid.

Proof. The part only if follows from Theorem 6. We prove if. It is enough to show
that F ∈ Hp, or (sup

y>0
|F (·, y)|)p ∈ L1(Rn). By the previous lemma F ∈ hp. Hence,

applying the Fatou lemma we have

(28)

∫

Rn

|F (x, 0)|pdx =

∫

Rn

(

lim
y→0

|F (x, y)|
)p

dx ≤ lim
y→0

Mp(y, F ) ≤ C.

We claim that sup
y>0

|F (x, y)| = |F (x, 0)| and our lemma follows from (28). Since for

fixed x0 ∈ Rn the function WF (x0, y) ≡ sup
η≥y

|F (x0, η)| is nonincreasing in y, we have

sup
y>0

|F (x0, y)| = sup
y>0

sup
η≥y

|F (x0, η)| = lim
y→0

sup
η≥y

|F (x0, η)| = |F (x0, 0)|.

Even if sup
y>0

|F (x0, y)| = |F (x0, y0)| for some y0 > 0, then WF (x0, y) = WF (x0, y0)

for all 0 ≤ y ≤ y0, and we may put |F (x0, y0)| = |F (x0, 0)|. �

Theorem 9. Let 0 < p < q, k ∈ N, and let F = (U, V1, ..., Vn) be a harmonic vector
in Rn+1

+ . Then F ∈ Hr ∀r : p ≤ r ≤ q if and only if

(29) 1) Mp(y + 1, F ) ≤ C, 2) Mp(y,Dk
n+1U) ≤ Cy−k, 3) F ∈ Hq.

Proof. By Corollary 1, and the inverse statement, proved in [9], conditions (23), (29)
are equivalent. �

Lemma 10. Let p > 0 and let F = (U, V1, ..., Vn) be a harmonic vector in Rn+1
+ such

that

(30) 1)Mp(y + 1, F ) ≤ C, 2)Mp(y, U) ≤ C, 3) |U(x, y)| ≤ C.

Then F ∈ Hr, r ≥ p.

Proof. By Theorem 7 we have F ∈ Hr, r > p. Let r = p. By Lemma 4 and Theorem
6 we have Mp(y,5kU) ≤ Cy−k, and we may use Theorem 9. �
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Lemma 11. Let 0 < p < q and let F = (U, V1, ..., Vn) be a harmonic vector in Rn+1
+

such that

(31) 1)Mp(y + 1, F ) ≤ C, 2)

∫

Rn

(

sup
η≥y

|Dn+1U(x, η)|
)q

dx ≤ C.

Then F ∈ Hq.

Proof. By the mean-value theorem,

sup
y>0

|U(x, y)| ≤ sup
y>0

|U(x, y + 1)| + sup
y>0

|∇U(x, y)|,

and it is enough to show that (sup
y>0

|U(·, y + 1)|)p ∈ L1. To prove this, we apply

Theorem 6, the mean-value theorem again,

|U(x, y + 1)| ≤ |U(x, y + 2)| + sup
y>0

|Dn+1U(x, y + 1 + θ)|,

and observe that conditions of the previous Lemma are satisfied with y + 1 instead
of y. �

6. Proof of Theorem 2.

The proof is given in two lemmata presented below.

Lemma 12. Let k ∈ N, 0 < p < q and let F = (U, V1, ..., Vn) be a harmonic vector in
Rn+1

+ . Then F and all its partial derivatives up to order k belong to H r, p ≤ r ≤ q,
if and only if

(32) 1)Mp(y + y0, F ) ≤ C(y0) ∀y0 > 0, 2)

∫

Rn

(

sup
η≥y

|Dk
n+1U(x, η)|

)q

dx ≤ C.

Proof. The only if part is trivial. We prove if by induction. Let k = 1. We show
at first that F ∈ Hr, p ≤ r ≤ q. By Lemma 11 we have F ∈ Hq, and it is enough
to show that F ∈ Hp. To this end, we apply the mean-value theorem and repeate
the proof of Lemma 9 begining with (24). As in Lemma 9 we define Li, and (26)
follows from 2). The last estimate in (27) follows from Theorem 6 and Lemma 10.
Conditions (30) are satisfied with ∇U instead of F , Dn+1U instead of U , and y + y0

instead of y.
To show that all partial derivatives of the first order belong to H r, p ≤ r ≤ q one

has to proceed as above by changing ∇U by ∇2U , and D2
n+1U by Dn+1U .

Assume that the statement is true for k − 1, and we have to prove it for k. By
Theorem 6 we have 1) with Dk−1

n+1U instead of F , and the result follows. �

Lemma 13. Conditions of the theorem are equivalent to conditions of the previous
lemma.

Proof. It is enough to prove that Mp(y + 1, F ) ≤ C and 2) of (32) imply 1) of (32).
This will follow from F ∈ Hq. Since Vi(x, y) ⇒x

y→∞ 0, i = 1, ..., n, it is enough to

show that U ∈ Hq. We will subsequently show that all Dk−1
n+1U,Dk−2

n+1U, ..., U ∈ Hq.

In fact, we prove that Dk−1
n+1U ∈ Hq. The proof of Dk−2

n+1U, ..., U ∈ Hq is similar.
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Observe that Dk−1
n+1U ∈ Hq follows from Dk−1

n+1U ∈ hq. Indeed, let Dk−1
n+1U ∈ hq. By

the mean-value theorem we have

sup
y>0

|Dk−1
n+1U(x, y)| ≤ sup

y>0
|Dk−1

n+1U(x, y + 1)| + sup
y>0

|Dk
n+1U(x, y)|,

and we may apply Lemma 10 to obtain
∫

Rn

(

sup
y>0

|Dk−1
n+1U(x, y + 1)|

)p

dx < ∞.

Here we use Lemma 10 with p = q, Dk−1
n+1U(x, y + 1) instead of U(x, y), ∇k−1F

instead of F . The assumption Dk−1
n+1U ∈ hq and Lemma 1 are used to satisfy the

third condition of Lemma 10. The above inequality gives Dk−1
n+1U ∈ Hq.

Thus, it remains to prove that Dk−1
n+1U(x, y) ∈ hq. By the mean-value theorem,

|Dk−1
n+1U(x, y)| ≤ |Dk−1

n+1U(x, y + 1)| + sup
y>0

|Dk
n+1U(x, y)|,

and it is enough to prove that Dk−1
n+1U(x, y + 1) ∈ hq. Again, by the mean-value

theorem,

|Dk−1
n+1U(x, y + 1)| ≤ |Dk−1

n+1U(x, y + 1 + 1)| + sup
y>0

|Dk
n+1U(x, y)|,

but now we may use the assumption Mp(y + 1, F ) ≤ C to show that Mr(y +
2,Dk−1

n+1U) ≤ C, r ≥ p. To this end, we apply Theorem 6, Lemma 1, and take
y + 1 instead of y. �

7. Auxiliary results for the proof of Theorem 3

Lemma 14. Let p > 0 and let F = (U, V1, ..., Vn) be a harmonic vector in Rn+1
+ such

that

(33) 1)Vj ⇒x
y→∞ 0, 2)Mp(y, U) ≤ C, 3)Mp(y,Dn+1U) ≤ C,

j = 1, ..., n. Then F ∈ Hr ∀r : p < r < np/(n − p) provided 0 < p < n, and F ∈ H r

∀r > p, provided p ≥ n.

Proof. Let 0 < p < n. By 1) it is enough to show that U ∈ H r ∀r : p < r < np/(n−p).
Assume at first that 0 < p < n, np/(n − p) ≤ 1. We have to show (see Theorem 5

and the definition of Hp spaces from [4]) that

(34)

∞
∫

0

∫

Rn

sr−1|Dn+1U(x, s)|rdxds =

1
∫

0

+

∞
∫

1

< C.

This can be done by using inequalities proved in [14]:

(35) Mr(y,Dn+1U) ≤ ACy−n/p+n/r,

(36) Mr(y, F ) ≤ ACy−n/p+n/r, Mr(y,∇U) ≤ ACy−1−n/p+n/r.

The estimate in (35) follows from 3). The estimates in (36) follow from 2).
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To estimate the first integral in the right-hand side of (34) we write

1
∫

0

sr−1ds

∫

Rn

|Dn+1U(x, s)|rdx ≤ AC

1
∫

0

sr−1s−
nr
p

+nds ≤ AC,

since r − 1 − nr/p + n > −1 ⇐⇒ r < np/(n − p). To estimate the second integral
in the right-hand side of (34) we use (36),

∞
∫

1

sr−1ds

∫

Rn

|Dn+1U(x, s)|rdx ≤ AC

∞
∫

1

sr−1s−r−nr
p

+nds ≤ AC,

where r − 1 − r − nr/p + n < −1.
Assume now that 1 < p < n, np/(n − p) > 1. We show that F ∈ H r, 1 < r <

np/(n − p). Here we use

(37) |U(x, y)| ≤ |U(x, 1)| +
1

∫

0

|Dn+1U(x, η)|dη.

The first inequality in (36) implies

(38) Mr(1, F ) ≤ AC.

Since F (x, 1) is bounded, (38) is true ∀r > p, and it is enough to show that the
second term in the right-hand side of (37) belongs to H r, 1 < r < np/(n − p). By
Minkowsi’s inequality we have

(

∫

Rn

1
∫

0

|Dn+1U(x, y)|rdxdy
)1/r

≤
1

∫

0

(

∫

Rn

|Dn+1U(x, y)|rdx
)1/r

dy ≤

1
∫

0

y−n/p+n/rdy ≤ AC, −n/p + n/r > −1.

If p < 1, np/(n−p) > 1, then one has to split (p, np/(n−p)) into two intervals (p, 1],
(1, np/(n − p)), and to repeat the previous parts of the proof.

Finally, let p ≥ n. We take r > p ≥ n ≥ 1, i.e. r > 1 and we may use Minkowski’s
inequality. �

Remark. The previous lemma is sharp in the case 0 < p ≤ 1. There exists a
harmonic vector F satisfying (33) such that F /∈ Hp, F /∈ Hnp/(n−p).

Proof. We take for simplicity n = 1, p = 1/2, q = np/(n − p) = 1. The multidimen-
sional example can be constructed by using the Poisson kernel. Consider a harmonic
vector

U(x, y) =
x

x2 + y2
− x

x2 + (y + 1)2
, V (x, y) = −

( y

x2 + y2
− y + 1

x2 + (y + 1)2

)

.
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Then

|F (x, y)| = 1
√

x2 + y2
√

x2 + (y + 1)2
, sup

y>0
|F (x, y)| = 1

|x|
√

x2 + 1
≤

√
2

|x|(|x|+ 1)
.

First of all, F ∈ Hr ∀r : 1/2 < r < 1,
∞

∫

−∞

(sup
y>0

|F (x, y)|)rdx ≤ A(r)

∞
∫

−∞

dx

(|x|(|x|+ 1))r
< C.

On the other hand, it is obvious that F /∈ H1,

∞
∫

−∞

sup
y>0

|F (x, y)|dx =

∞
∫

−∞

dx

|x|
√

x2 + 1
≥ 1√

2

1
∫

0

dx

x
= +∞,

and F /∈ H1/2,
∞

∫

−∞

√

sup
y>0

|F (x, y)|dx =

∞
∫

−∞

dx
√

|x|
√

x2 + 1
≥ 2−1/4

∞
∫

1

dx

x
= +∞.

It remains to show that M1/2(y, U) ≤ C, M1/2(y,Dn+1U) ≤ C. We have

M1/2(y, U) =

∞
∫

−∞

√

|U(x, y)|dx = 2

∞
∫

0

√

x(2y + 1)

(x2 + y2)(x2 + (y + 1)2)
dx ≤

2
√

2

∞
∫

0

√

xy

(x2 + y2)2
dx + 2

∞
∫

0

dx√
x
√

x2 + 1
≤ C,

where in the first integral of the above inequality one has to make a substitution
x/y = t. Now,

Dn+1U(x, y) =
2xy

(x2 + y2)2
− 2x(y + 1)

(x2 + (y + 1)2)2

and the estimate M1/2(y,Dn+1U) ≤ C is similar. �

Lemma 14 can be generalized to the case of partial derivatives of any order.

Lemma 15. Let p > 0 and let F = (U, V1, ..., Vn) be a harmonic vector in Rn+1
+ such

that

(39) 1)Vj ⇒x
y→∞ 0, j = 1, ..., n, 2)Mp(y, U) ≤ C, 3)Mp(y,Dk

n+1U) ≤ C

for some k ∈ N.
a) If 0 < kp < n, then F ∈ Hr ∀r : p < r < np/(n − kp). If kp ≥ n, then F ∈ Hr

∀r ≥ p.
b) Let k > 1, 1 ≤ m ≤ k − 1, m ∈ N. If 0 < (k − m)p < n, then all partial

derivatives of F of the order m belong to H r ∀r : p < r < np/(n − (k − m)p). If
(k − m)p ≥ n, then all partial derivatives of F of the order m belong to H r ∀r ≥ p.
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Proof. The proof is a consequence of Lemma 14 and Theorem 2. For convenience of
the reader we give it here.

We begin with b), 0 < (k − m)p < n. Let m = k − 1. Then 2) and Lemma
2 imply Mp(y,∇k−1U) ≤ Cy−(k−1), and we may follow the proof of Lemma 14 with
Dk−1

n+1U instead of U . To estimate the integral, similar to (34), we use Mr(y,∇k−1U) ≤
Cy−(k−1)−n/p+n/r instead of the second inequality in (36). We conclude that all partial
derivatives of the order k − 1 belong to H r, p < r < np/(n − p).

Now let m = k − 2. By the previous step, Dk−1
n+1 ∈ H

np

n−p
−ε, where ε > 0 is small

enough. We repeat the proof of Lemma 14 with np
n−p

− ε instead of p. We have all

partial derivatives of the order k − 2 in Hr, np
n−p

− ε < r < n(np/(n−p)−ε)
n−np/(n−p)+ε

. Letting

ε → 0, we have np
n−p

≤ r < np
n−2p

. It remains to show that all partial derivatives of

the order k − 2 belong to Hr, p < r < np
n−p

. Since all partial derivatives of the order

k − 1 belong to Hr, p < r < np/(n − p), we may use Theorem 2 with q = np
n−p

− ε,

and k − 1 instead of k. Thus, we get b) for m = k − 2, provided 0 < (k − m)p < n.
The proof of the cases m = k − 3, k − 4, ..., 1, 0 < (k − m)p < n, is similar.

We prove b), the case (k − m)p ≥ n. If m = k − 1, then the result follows from
Lemma 14 (repeat the proof with Dk−1

n+1U instead of U).

Let m = k−2. We write (37) with Dk−2
n+1U instead of U , and observe that all partial

derivatives of the order k − 2 belong to H r ∀r ≥ p, provided p ≥ n. To get the case
2p ≥ n we apply Theorem 2. Thus, we get b) for m = k − 2, provided (k −m)p ≥ n.
The proof of the cases m = k − 3, k − 4, ..., 1, (k −m)p ≥ n, is similar. The proof of
b) is complete.

We show a) by induction on k. For k = 1, a) is just Lemma 14. Assume that
a) is true for k − 1, 0 < (k − 1)p < n. To prove the statement for k, 0 < kp < n,
it is enough to show that F ∈ Hr, np

n−(k−1)p
< r < np

n−kp
. To this end, we observe

that b) and the induction hypothesis force the first derivative of F to be in H r,
p < r < np

n−(k−1)p
. Hence, we may apply Lemma 14 (with np

n−(k−1)p
− ε instead of p)

to get F ∈ Hr, np
n−(k−1)p

< r < np
n−kp

.

Now, let a) be true for k − 1, (k − 1)p ≥ n. To prove the statement for k, kp ≥ n,
we use Theorem 2. �

8. Proof of Theorem 3

Now we prove Theorem 3. We prove a). By Theorem 1 and Lemma 15, we have
F ∈ Hr, ∀r : p ≤ r < np/(n− kp). We have to prove that F ∈ Hnp/(n−kp). We prove
this in two steps. At first we assume that

(40) I(a,
np

n − kp
) ≡

∫

R
n+1
+

ya|F (x, y)|np/(n−kp)dxdy < ∞, for some − 1 < a < 0,

and prove that (40) implies F +(x) ∈ Lnp/(n−kp). Then we prove (40).
Let (40) be true. Define E = {x ∈ Rn : F+(x) ≤ 1}, and let CE denote the

complement of E. Since F ∈ Hr, p ≤ r < np/(n − kp), we have m(CE) < ∞. If
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F /∈ Lnp/(n−kp)(CE), then

I(a,
np

n − kp
) ≥

1
∫

0

yady

∫

Rn

|F (x, y)|np/(n−kp)dx ≥
1

∫

0

dy

∫

Rn

|F (x, y)|np/(n−kp)dx.

But the last integral may be arbitrary large, a contradiction.

It remains to prove (40). We split I(a, np
n−kp

) into two parts,
( 1

∫

0

+
∞
∫

1

)

dy. Since

Mr(y, F ) ≤ C, p ≤ r < np/(n − kp), we have Mr(y, F ) ≤ ACy−n/p+n/r for r > p.
Let r = np/(n − kp), then −nr/p + n = −nkp/(n − kp) < np/(n − kp). Chosing
a ∈ (−1, 0) such that a − np/(n − kp) < −1, we obtain

∞
∫

1

yady

∫

Rn

|F (x, y)|np/(n−kp)dx ≤ AC

∞
∫

1

yay− n2p

p(n−kp)
+ndy < ∞.

To estimate
1
∫

0

yady
∫

Rn

|F (x, y)|np/(n−kp)dx, we write

1
∫

0

yady

∫

E

|F (x, y)|np/(n−kp)dx +

1
∫

0

yady

∫

CE

|F (x, y)|np/(n−kp)dx.

The first integral is obviously finite. To get a bound for the second one we fix
a : a− np

n−kp
< −1 as above, and choose r < np

n−kp
such that −( np

n−kp
− r)n

r
+ a > −1.

Then we use sup
x∈Rn

|F (x, y)| ≤ ACy−n/r to obtain

1
∫

0

yady

∫

CE

|F (x, y)|np/(n−kp)dx ≤ AC

1
∫

0

ya−( np

n−kp
−r) n

r dy

∫

Rn

(F+(x))rdx ≤

AC

1
∫

0

ya−( np

n−kp
−r) n

r dy ≤ AC.

Thus, we have a).
We prove b). By Theorem 1 and Lemma 15, all partial derivatives of F of the

order m belong to Hr, ∀r : p ≤ r < np/(n − (k − m)p). We have to prove that all
partial derivatives of F of the order m belong to Hnp/(n−(k−m)p). The proof of this is
similar to the proof of a) with obvious changes, one has only take ∇mF instead of
F , and np/(n − (k − m)p) instead of np/(n − kp).

The proof of Theorem 3 is complete.
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9. Proof of Theorem 4.

Lemma 16. Let α > 0, β > −1, p > 0 and let W (x, y) ≥ 0 in Rn+1
+ be such that

W p be subharmonic and

I(α, p, β) =

∫

R
n+1
+

sαp+βW p(x, s)ds < ∞.

Then the function Wα(x, y) ≡ 1
Γ(α)

∞
∫

0

sα−1W (x, s + y)ds is subharmonic, and ∀y ≥
y0 > 0 we have

∫

Rn

(Wα(x, y))pdx ≤ A(α, n, p, β, y0)I(α, p, β).

In particular Wα ∈ Sp(Rn+1
+ ).

Proof. The proof is based on the arguments, which are similar to those in [5], Lemma
16 and Theorem 3.

We take U = W p(x, t), q = αp+β+1 in Lemma 16, [5]. Since W p is subharmonic,
and I(α, p, β) is convergent, we may use the proof of Theorem 3, [5], to conclude
that the integral defining Wα(x, y) is convergent and Wα(x, y) is subharmonic. There
exist f ≥ 0 and a constant A(n, p, β, α) such that

‖f‖1 ≤ A(n, p, β, α)I(α, p, β), W (x, s+y) ≤ A(n, p, β, α)(s+y)−α−(1+β)/pf1/p(x),

and we have

Wα(x, y) ≤ A(n, p, β, α)y
−α−(1+β)/p
0 f1/p(x), ∀y ≥ y.

�

The proof of the next lemma can be obtained by the reasons which are similar to
those in [10].

Lemma 17. Let p > 0, α > −1, m ∈ N, and F be a harmonic vector such that
F ⇒x

y→∞ 0, I(α,m, p) ≡
∫

R
n+1
+

tα+mp|Dm
n+1U(x, t)|pdxdt < ∞. Then

∫

R
n+1
+

tα|F (x, t)|pdxdt ≤ A(n, p, α)CI(α,m, p).

As a consequence of two previous lemmata we have

Lemma 18. Let p > 0, α > −1, and let F be a harmonic vector such that
∫

R
n+1
+

tα|F (x, t)|pdxdt < ∞.

Then all tensor coordinates of the rank k ≥ 1 of Vi, i = 0, ..., n, V0 = U , belong to

Sp. In particular,
(

sup
y>0

|F (·, y + y0)|
)p

∈ L1 ∀y0 > 0.
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Now we prove Theorem 4. We start with a). Let np/(n − p) < r < 1. We claim
that

(41)

∫

R
n+1
+

yr−1|Dn+1U(x, y)|rdxdy =
(

1
∫

0

+

∞
∫

1

)

yr−1dy

∫

Rn

|Dn+1U(x, y)|rdx < ∞.

The first integral in the right-hand side of the above equality is obviously finite for
all r > 0. Since Mr(y,Dn+1U) ≤ ACy−n/p+n/r, r > p, the second integral is also
finite. By Theorem 5 we have Mr(y, U) ≤ C, r > np/(n − p). The mean-value
theorem, and condition 3) imply the boundedness of U . By Theorem 7, U ∈ H r,
1 > r > np/(n − p).

Now, let r > 1, and let γ > 0 be such that r − 1 + γ − nr/p + n < −1, together
with r − 1 − nr/p + n < −1. Then the integral

∫

R
n+1
+

yr+γ−1|Dn+1U(x, y)|rdxdy < ∞,

and Lemma 17 (with m = 1, α = γ − 1) gives
∫

R
n+1
+

yγ−1|Dn+1U(x, y)|rdxdy < ∞.

Since γ − 1 > −1, we apply Lemma 18 to obtain
(

sup
y>0

|F (·, y + 1)|
)r

∈ L1, r >

np/(n − p). By Theorem 7, Dn+1U ∈ Hr, and the mean-value theorem implies
U ∈ Hr.

We prove b). Let n = 1 and consider

U(x, y) =
1/2 log(x2 + (y + 2)2)

1/4 log2(x2 + (y + 2)2) + arctan2(x/(y + 2))
,

V (x, y) =
arctan(x/(y + 2))

1/4 log2(x2 + (y + 2)2) + arctan2(x/(y + 2))
.

It is clear that U, V satisfy all conditions of the Theorem, nevertheless F /∈ H r,
provided r > 0.

The proof of Theorem 4 is complete.
Observe that all conditions of the Theorem are essential and inependent one on

another. Indeed, let n = 1, p ≥ 1,

U(x, y) = log(x2 + (y + 1)2), V (x, y) = − arctan
x

y + 1
.

This functions satisfy all conditions of the theorem, but the first one, and F /∈ H r,
r > 0.

Now, let n = 1, p = 1/2,

U(x, y) =
x

x2 + y2
, V (x, y) = − y

x2 + y2
.
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We have 1) and 2), but not 3), and F /∈ Hr, r > 0.

Let n = 2, r =
√

x2
1 + x2

2 + (y + 1)2,

F = (U, V1, V2), V1 =
1

r
, V2 =

x2

r(r + x1)
, U =

y + 1

r(r + x1)
.

We have 1) and 3), but not 2), and F /∈ Hr, r > 0.
Finally, we note that one can not conclude that F ∈ H r, r = np/(n − p). Indeed,

let n = 1, p = 1/2, np/(n − p) = 1. Then

U =
x

x2 + (y + 1)2
, V =

y + 1

x2 + (y + 1)2

satisfy all conditions of the Theorem , but F ∈ Hr, r > 1, r > np/(n − p) and
F /∈ H1.
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