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Abstract. Let 2 ≤ k ≤ d − 1 and let P and Q be two convex polytopes in Ed.
Assume that their projections, P |H, Q|H, onto every k-dimensional subspace H,
are congruent. In this paper we show that P and Q or P and −Q are translates of
each other. We also prove an analogous result for sections by showing that P = Q
or P = −Q, provided the polytopes contain the origin in their interior and their
sections, P ∩H, Q ∩H, by every k-dimensional subspace H, are congruent.

1. Introduction

In this paper we address the following problems (cf., for example, [Ga, Problem
3.2, p. 125 and Problem 7.3, p. 289]).

Problem 1. Let 2 ≤ k ≤ d − 1. Assume that K and L are convex bodies in Ed
such that the projections K|H and L|H are congruent for all H ∈ G(d, k). Is K a
translate of ±L?

Problem 2. Let 2 ≤ k ≤ d − 1. Assume K and L are star bodies in Ed such that
the sections K ∩H and L ∩H are congruent for all H ∈ G(d, k). Is K = ±L?

Here we say that K|H, the projection of K onto H, is congruent to L|H if
there exists an orthogonal transformation ϕ ∈ O(k,H) in H such that ϕ(K|H) is
a translate of L|H; G(d, k) stands for the Grassmann manifold of all k-dimensional
subspaces in Ed.

Golubyatnikov has obtained some partial answers to Problem 1 in the case of
direct rigid motions, i.e., when the orthogonal group O(k) is replaced by the special
orthogonal group SO(k). In particular, he proved that the answer is affirmative,
provided k = 2 and none of the projections of the bodies have symmetries with
respect to rotations (in other words, the only direct rigid motion taking K|H, L|H
onto themselves is the identity). We refer the reader to [Go], [Ga] (pp. 100− 110),
[Ha] (pp. 126 − 127), [R1], [R2], [R3] and [ACR], for history and partial results
related to the above problems.

In this paper we give an affirmative answer to Problems 1 and 2 in the class of
convex polytopes. Our first result is
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Theorem 1. Let 2 ≤ k ≤ d − 1 and let P and Q be two convex polytopes in Ed
such that their projections P |H, Q|H, onto every k-dimensional subspace H, are
congruent. Then there exists b ∈ Ed such that P = Q+ b or P = −Q+ b.

If projections of the bodies are directly congruent, Golubyatnikov proved Theorem
1 in the case k = 2 (the result is contained in the proof of Theorem 2.1.2, p. 19; cf.
[Go], p. 17, Lemma 2.1.4), and in the case k = 3 under the additional assumption
that none of the 3-dimensional projections have rigid motion symmetries (cf. [Go],
p. 48, Theorem 3.2.1); see also [ACR], where the assumption on symmetries was
relaxed.

Our second result is

Theorem 2. Let 2 ≤ k ≤ d − 1 and let P and Q be two convex polytopes in Ed
containing the origin in their interior. Assume that their sections, P ∩H, Q ∩H,
by every k-dimensional subspace H, are congruent. Then P = Q or P = −Q.

If sections of the bodies are directly congruent Theorem 2 is known in the case
k = 2 (cf. [AC]), and in the case k = 3 (cf. [ACR]) under the additional assumptions
that diameters of one of the polytopes contain the origin and certain sections related
to the diameters have no rigid motion symmetries.

We remark that in both Theorems it is enough to assume that only one of the
bodies is a convex polytope. This follows from a result of Klee [Kl], who showed
that a set in Ed must be a convex polytope, provided all of its projections on k-
dimensional subspaces are convex polytopes. It follows by duality (see [Ga], formula
(0.38), p. 22) that if all sections of a convex body containing the origin in its interior
are polytopes, then the body is a polytope.

The paper is organized as follows. In the next section we recall some definitions
for convenience of the reader. We also prove some auxiliary Lemmata that will be
used in Sections 3 and 4, where we prove Theorems 1 and 2.

Acknowledgements: We would like to thank Alexander Fish for useful dis-
cussions. We are indebted to the referee for their suggestions that considerably
improved the paper.

1.1. Notation. We denote by Sd−1 = {x ∈ Ed : |x| = 1} the set of all unit vectors
in the Euclidean space Ed, and by Sd−1ζ = {x ∈ Sd−1: x ·ζ < 0} the open hemisphere

in the direction ζ ∈ Sd−1; O stands for the origin of Ed. We write that line l1 is
parallel to line l2 as l1 ‖ l2. For any unit vector ξ ∈ Sd−1 we let ξ⊥ to be the
orthogonal complement of ξ in Ed, i.e., the set of all x ∈ Ed such that x · ξ = 0;
here x · ξ stands for a usual scalar product of x and ξ ∈ Ed. The notation for the
orthogonal group O(k) and the special orthogonal group SO(k) is standard. The
notation ϕξ ∈ O(d − 1, ξ⊥) will be used for an orthogonal transformation acting
in ξ⊥. We agree to denote by xy the closed interval connecting x and y, i.e., all
points of the form ty + (1− t)x, t ∈ [0, 1]; the shortest arc of the unit circle joining
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the points x and y on Sd−1 will be denoted by [xy]; span(a1, a2, . . . , am) stands
for the m-dimensional subspace that is a linear span of the linearly independent
vectors a1, . . . , am; span(A) is the linear subspace of smallest dimension containing
a set A ⊂ Ed. Also, for any set A ⊂ Ed the notation Aξ = A|ξ⊥ is used for the
projection of A onto ξ⊥. The shadow boundary of a convex polytope P in direction
ξ will be denoted by ∂ξP , i.e., ∂ξP = {x ∈ P : xξ ∈ ∂Pξ}; here ∂Pξ stands for the
boundary of the projection Pξ. Given a set B, conv(B) denotes the smallest convex
set containing B.

2. Definitions and Auxiliary Results

A set A ⊂ Ed is convex if for any two points x and y in A the closed line segment
xy joining them is in A. A convex body K ⊂ Ed is a compact convex set with a
non-empty interior (with respect to Ed). A convex polytope P ⊂ Ed is a convex body
that is the convex hull of finitely many points (called the vertices of P ).

Fix 1 ≤ k ≤ d. We say that a convex set B is a k-dimensional convex polytope if
there exists an affine k-dimensional subspace M of Ed such that B ⊂M and B is a
convex polytope relative to M (i.e., the interior of B is taken with respect to M).

We will say that a subset D of an open hemisphere Sd−1ζ , zη ∈ Sn−1, is geodesically
convex, if for any two points x and y in D the arc of the unit circle [xy] joining them
is in D.

We define a rigid motion Tξ acting in ξ⊥, Tξ : ξ⊥ → ξ⊥, as a composition of an
orthogonal transformation ϕξ and a translation by aξ ∈ ξ⊥, Tξ(x) = ϕξ(x) + aξ for
all x ∈ ξ⊥.

The supporting hyperplane G to a convex body K is defined as the hyperplane
having common points with K and such that K lies in one of the two closed half-
spaces with the boundary G. The support function of a convex body is defined as
hK(ξ) = max

x∈K
x · ξ for all ξ ∈ Ed.

If L is a convex body containing the origin in the interior, its radial function
is defined as ρL(ξ) = max {λ > 0 : λξ ∈ L} for all ξ ∈ Ed. Since hK and ρK are
homogeneous functions of degrees 1 and −1 correspondingly, it is enough to consider
their values for ξ ∈ Sd−1, where both functions are continuous.

Our first auxiliary result will be used in the proof of Theorem 1.

Lemma 2.1. Consider four points A,B,C,D ∈ Ed, such that for an open set U ⊂
Sd−1 of directions ξ, |AξBξ| = |CξDξ| 6= 0. Then the intervals AB and CD are
parallel and have equal length.

Proof. Since any parallel translation preserves the length of the projections of the
intervals, we may assume that A = C = O. Let a and b be the unit vectors of
directions of AB and CD, and t and s be their lengths. In this case, the projections
of B and D onto ξ⊥ can be found as

Bξ = ta− (ξ · ta)ξ and Dξ = sb− (ξ · sb)ξ, ∀ξ ∈ U.
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Our goal is to prove that t = s and a = b or a = −b.
The condition on the equality of the lengths of projections can be written as

t|a− (ξ · a)ξ| = s|b− (ξ · b)ξ| ∀ξ ∈ U,
or

t2 − s2 = t2(ξ · a)2 − s2(ξ · b)2 = (ξ · (ta− sb))(ξ · (ta+ sb)) ∀ξ ∈ U.
We claim that the right-hand side of the above identity is not an identically

constant function of ξ on the spherical cap U , unless ta − sb = 0 or ta + sb = 0.
Indeed, if the claim is false, then dividing the above identity by the lengths of vectors
ta− sb, ta+ sb, we see that the function

f(ξ) = (ξ · v)(ξ · w), v =
ta− sb
|ta− sb|

, w =
ta+ sb

|ta+ sb|
,

is identically constant (equal to t2−s2
|ta−sb||ta+sb|) on U . For c1, c2 ∈ (−1, 1) consider the

level sets

Lv(c1) = {ξ ∈ Sd−1 : ξ · v = c1}, Lw(c2) = {ξ ∈ Sd−1 : ξ · w = c2},
of functions ξ → ξ · v and ξ → ξ · w. It is clear that Lv(c1), Lw(c2) are the
corresponding (d − 2)-dimensional sub-spheres of Sd−1. Since v 6= ±w, Lv(c1) 6=
Lw(c2) ∀c1, c2 ∈ (−1, 1), and Lv(c1) ∩ Lw(c2) is (at most) an (d − 3)-dimensional
subsphere of Sd−1. Taking c1, c2 ∈ (−1, 1) such that Lv(c1) ∩ Lw(c2) ∩ U 6= ∅, and
changing ξ in U ∩(Lv(c1)\Lw(c2)), we see that ξ ·v remains constant while ξ ·w does
not. Thus, f(ξ) is not constant on U , and we obtain a contradiction. The claim is
proven, and the proof of the Lemma is finished. �

The next statement shows that one may disregard the set of all directions for which
at least two facets of the projections are orthogonal. Here we say that two affine
subspaces of co-dimension one are orthogonal if their normal vectors are orthogonal;
two facets of a polytope are orthogonal if the affine subspaces containing them are.

Lemma 2.2. Let α and β be two non-parallel (d− 2)-dimensional subspaces in Ed,
such that dim(α ∩ β) = d − 3. Then the set of directions ξ ∈ Sd−1 \ (α ∪ β), for
which αξ is orthogonal to βξ, is a nowhere dense subset of Sd−1.

Proof. Assume that α ∩ β = span{c1, c2, . . . , cd−3} and α = span{a, c1, . . . , cd−3},
β = span{b, c1, . . . , cd−3}, where a, b, and cj are linearly independent vectors in Ed,
j = 1, . . . , d − 3, a 6= b. By condition of the lemma, we have αξ =span{aξ, (c1)ξ,
. . . , (cd−3)ξ}, βξ = span{bξ, (c1)ξ, . . . , (cd−3)ξ}, αξ ∩ βξ = span{(c1)ξ, . . . , (cd−3)ξ}.
Here (ci)ξ = ci − (ci · ξ)ξ, i = 1, . . . , d− 3, and aξ = a− (a · ξ)ξ, bξ = b− (b · ξ)ξ.

Let nαξ and nβξ be the normal vectors to αξ and βξ in ξ⊥. If αξ ⊥ βξ, then nαξ ⊥
nβξ , and, in the three-dimensional case, the condition of orthogonality nαξ · nβξ = 0
can be written as

aξ · bξ = (a− ξ(a · ξ)) · (b− ξ(b · ξ)) = a · b− (a · ξ)(b · ξ) = 0.
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To write out the condition in the case d ≥ 4, we consider a linear transformation
Aξ ∈ O(d), such that Aξξ = ed = (0, . . . , 0, 1). For all ξ ∈ Sd−1, ξ 6= ed, we identify
Aξ with the corresponding matrix

Aξ =


−1 +

ξ21
1−ξd

ξ1ξ2
1−ξd

. . . ξ1ξd−1

1−ξd
−ξ1

− ξ1ξ2
1−ξd

1− ξ22
1−ξd

. . . − ξ2ξd−1

1−ξd
ξ2

. . . . . . . . . . . . . . .

− ξ1ξd−1

1−ξd
− ξd−1ξ2

1−ξd
. . . 1− ξ2d−1

1−ξd
ξd−1

ξ1 ξ2 . . . ξd−1 ξd

 ,

(if we treat the i-th row ri of Aξ as a d-dimensional vector, then ri · rj = δij, i, j=1,
. . . , d). If ξ = ed we put Aξ = I.

Consider now the vectors ã = ã(ξ) = Aξaξ, b̃ = b̃(ξ) = Aξbξ, c̃i = c̃i(ξ) =
Aξ(ci)ξ, ñαξ = Aξnαξ , ñβξ = Aξnβξ . The condition of the normals being orthogo-
nal is

(1) ñαξ · ñβξ = nαξ · nβξ = 0 ξ ∈ Sd−1 \ (α ∪ β),

where the normal vectors ñαξ , ñβξ ∈ e⊥d can be found as the generalized vector
products,

ñαξ =

∣∣∣∣∣∣∣∣∣∣
e1 e2 e3 . . . ed−1
ã1 ã2 ã3 . . . ãd−1

c̃11 c̃21 c̃31 . . . c̃d−11

. . . . . . . . . . . . . . .
c̃1d−3 c̃2d−3 c̃3d−3 . . . c̃d−1d−3

∣∣∣∣∣∣∣∣∣∣
,

ñβξ =

∣∣∣∣∣∣∣∣∣∣
e1 e2 e3 . . . ed−1
b̃1 b̃2 b̃3 . . . b̃d−1

c̃11 c̃21 c̃31 . . . c̃d−11

. . . . . . . . . . . . . . .
c̃1d−3 c̃2d−3 c̃3d−3 . . . c̃d−1d−3

∣∣∣∣∣∣∣∣∣∣
.

Here ãj, b̃j stand for the j-th coordinate of the vectors ã and b̃, c̃ji is the j-th coordi-
nate of the vector c̃i, and ej, j = 1, . . . , d− 1, are the vectors of the standard basis
in e⊥d .

Notice that the j-th coordinate of the normal ñαξ is a rational function Rα
j (ξ) =

Pαj (ξ)

(1−ξd)d−2 of the coordinates of ξ, where Pα
j (ξ) is a polynomial in coordinates of ξ.

Similarly for ñβξ , i.e.,

ñαξ = (Rα
1 (ξ), . . . , Rα

d−1(ξ)), ñβξ = (Rβ
1 (ξ), . . . , Rβ

d−1(ξ)).

Since we can choose the standard basis in Ed in such a way that ed ∈ n⊥α ∪ n⊥β , we
can assume that ξd 6= 1.
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Multiplying each vector nαξ , nβξ by (1 − ξd)
d−2, we see that our condition on

directions ξ ∈ Sd−1 \ (α ∪ β) for which nαξ · nβξ = 0 can be re-written as

f(ξ) :=
d−1∑
l=1

Pα
l (ξ)P β

l (ξ) = 0.

In other words, the desired set is Df = Zf ∩ (Sd−1 \ (α ∪ β)), where Zf is the set
of zeros of f on Sd−1. By geometric considerations, f is not identically zero (it is
enough to look at the directions ξ that are close to the ones that are parallel to
span (α, β)). If the closure of Df has a non-empty interior then Zf has a non-empty
interior, i.e., there exists a spherical cap Bε(w) ⊂ Zf of radius ε > 0 centered at

w ∈ Sd−1. But this is impossible, for replacing ξd with
√

1− ξ21 − · · · − ξ2d−1 in the

analytic expression for f , we obtain an analytic function of variables ξ1, . . . , ξd−1 in
an open disc Bε(w)|w⊥ centered at the origin. This contradicts the fact that the set
of zeros of an analytic function of several real variables is of Lebesgue measure zero
(cf. [O]).

Thus, the closure of Df has an empty interior, which means that Df is nowhere
dense. The Lemma is proved. �

The following elementary result will be crucial in the Proof of Theorem 2.

Lemma 2.3. Let U be an open subset of Sd−1 and let {li}4i=1 be four lines in Ed, d ≥
3, not passing through the origin, such that for any ξ ∈ U the subspace ξ⊥ intersects
each line at a single point vi(ξ). Assume also that |v1(ξ)v2(ξ)| = |v3(ξ)v4(ξ)| for any
ξ ∈ U .

1) If l1 and l2 are parallel, then all four lines are parallel. In addition, there exists
a translation b, such that l3 = l1 + b and l4 = l2 + b or l3 = l2 + b and l4 = l1 + b
(the last relation can be re-written as l3 = −l1 + c, l4 = −l2 + c for c ∈ Ed; here −l
is the reflection of the line l in the origin, i.e., −l = {−x : x ∈ l}).

2) If l1 and l2 are not parallel, then one of the following holds: l1 = ±l3, l2 = ±l4
or l1 = ±l4, l2 = ±l3.

3) If l1 and l2 are not parallel and dim(span(l1∪ l2)) = 3, then one of the following
holds: l1 = l3, l2 = l4, or l1 = −l3, l2 = −l4, or l1 = l4, l2 = l3, or l1 = −l4, l2 = −l3.

Proof. We start the proof with some elementary algebraic observations.
Parameterize each line li(t) = bi + tai, such that t ∈ R, |ai| = 1 and bi · ai = 0.

Notice, that the choice of the directional vectors ai is determined up to a sign, and
the value of the parameter t for the points of intersection can be found from the
condition ξ · (bi+ tai) = 0, i.e., vi(ξ) = bi− ξ·bi

ξ·aiai. Hence, the condition of the lemma

can be re-written as

(2)

∣∣∣∣b1 − ξ · b1
ξ · a1

a1 − b2 +
ξ · b2
ξ · a2

a2

∣∣∣∣ =

∣∣∣∣b3 − ξ · b3
ξ · a3

a3 − b4 +
ξ · b4
ξ · a4

a4

∣∣∣∣ , ∀ξ ∈ U.
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In other words,

(3)
P1(ξ)

Q1(ξ)
=
P2(ξ)

Q2(ξ)
, ∀ξ ∈ U,

where

P1(ξ) = |(ξ · a1)(ξ · a2)(b1 − b2)− (ξ · b1)(ξ · a2)a1 + (ξ · a1)(ξ · b2)a2|2,
P2(ξ) = |(ξ · a3)(ξ · a4)(b3 − b4)− (ξ · b3)(ξ · a4)a3 + (ξ · a3)(ξ · b4)a4|2,

Q1(ξ) = |(ξ · a1)(ξ · a2)|2, Q2(ξ) = |(ξ · a3)(ξ · a4)|2.
By the direct computations, we have

P1(ξ) = (ξ · a1)2(ξ · a2)2|b1 − b2|2 + (ξ · b1)2(ξ · a2)2 + (ξ · a1)2(ξ · b2)2+
+2(ξ · b1)(ξ · a2)2(ξ · a1)(a1 · b2)− 2(ξ · a1)(ξ · b2)(ξ · a2)(ξ · b1)(a1 · a2)+

+2(ξ · a1)2(ξ · a2)(ξ · b2)(b1 · a2).
To proceed, we show at first that the left-hand side of (3) is reducible if and only

if l1 ‖ l2.
Indeed, if l1 ‖ l2, then a1 = ±a2, and the fractions are reducible. Using the fact

that a1 · b2 = a2 · b1 = 0, we can re-write the left-hand side of (3) as:

(4)
P1(ξ)

Q1(ξ)
=

(ξ · a1)2|b1 − b2|2 + (ξ · (b1 − b2))2

(ξ · a1)2
.

The fraction in (4) is not reducible, for, otherwise, a1 = ±(b1 − b2), which is not
possible due to (b1 − b2) ⊥ a1.

Now assume that the left-hand side of the equation (3) is reducible by, say, (ξ ·a1).
Then the second term of P1(ξ) is reducible by (ξ · a1). Since b1 ⊥ a1, we obtain that
a2 = ±a1. Similarly, if the left-hand side of (3) is reducible by (ξ ·a2), then the third
term is reducible by (ξ · a2), which gives a2 = ±a1 and l1 ‖ l2.

If the left-hand side is of (3) is reducible, i.e., looks as (4), then its right-hand
side must be reducible as well. To see this, compare all directions ξ ∈ Sd−1 for
which either of the fractions is not defined. In particular, for all ξ ∈ Sd−1 such that
ξ · a1 = 0, we must have have ξ · a3 = 0 or ξ · a4 = 0. Without loss of generality,
assume that a1 = ±a3. Then,

(ξ · a1)2|b1 − b2|2 + (ξ · (b1 − b2))2 =
P2(ξ)

(ξ · a4)2
.

Since the polynomial on the left-hand side of the previous equality is defined for any
ξ ∈ Sd−1, the right-hand side must be reducible.

Thus, we obtain that a1 = ±a2 implies a3 = ±a4, i.e., l1 ‖ l2 implies l3 ‖ l4.
If both of the fractions are reducible (i.e., a1 = ±a2, a3 = ±a4), the equality of

denominators implies a1 = ±a2 = ±a3 = ±a4. Using the equality of the numerators,
we have

(5) (ξ · a1)4(|b1 − b2|2 − |b3 − b4|2) + ((ξ · (b1 − b2))2 − (ξ · (b3 − b4))2)(ξ · a1)2 = 0.
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By taking ξ = a1 in (5), we obtain |b1 − b2| = |b3 − b4|. We see now that (5) has
reduced to

((ξ · (b1 − b2))2 − (ξ · (b3 − b4))2)(ξ · a1)2 = 0,

or to

(ξ · (b1 − b2 − (b3 − b4)))(ξ · (b1 − b2 + b3 − b4)) = 0 ∀ξ ∈ Ed.
This implies

b1 − b2 = b3 − b4 or b1 − b2 = b4 − b3.
The first part of the lemma is proved.

We prove 2).
In this case, as we have already seen, the fractions in equation (3) are not re-

ducible. We will consider the first four possibilities, other four options are ob-
tained by changing indices 3↔ 4. Comparing the denominators in (3), we see that
a1 = ±a3, a2 = ±a4. Writing out the numerators in (3), we have

(ξ · a1)2(ξ · a2)2(|b1 − b2|2 − |b3 − b4|2) + (ξ · a2)2((ξ · b1)2 − (ξ · b3)2)+

+ (ξ · a1)2((ξ · b2)2 − (ξ · b4)2)−
− 2(ξ · a1)(ξ · a2)2((a1 · (b1 − b2))(ξ · b1)− (a1 · (b3 − b4))(ξ · b3))+
+ 2(ξ · a1)2(ξ · a2)((a2 · (b1 − b2))(ξ · b2)− (a2 · (b3 − b4))(ξ · b4))−
− 2(ξ · a1)(ξ · a2)(a1 · a2)((ξ · b1)(ξ · b2)− (ξ · b3)(ξ · b4)) = 0.

Since the second term must be divisible by ξ ·a1 and the third one must be divisible
by ξ · a2, we see that b1 − b3 = λ1a1 or b1 + b3 = µ1a1 for some λ1, µ1 ∈ R (observe
that both conditions may not hold simulteneously, for, otherwise, summing them
up, we would obtain that a1 is parallel to b1) and b2 − b4 = λ2a2 or b2 + b4 = µ2a2
for some λ2, µ2 ∈ R (again, both conditions may not hold simulteneously, otherwise
a2 would be parallel to b2). If b1 − b3 = λ1a1, then l1 = l3, for, the parametric
equation of l3 becomes l3(t) = b1 − λ1a1 + ta1, t ∈ R, which is the same as the one
of l1(s) = b1 + a1s, s ∈ R, after taking t = λ1 + s. Arguing similarly, we see that
l1 = ±l3, l2 = ±l4. This finishes the proof of 2).

In order to prove 3), it remains to exclude two cases l1 = l3, l2 = −l4, and l1 = −l3,
l2 = l4, provided dim(span(l1, l2)) = 3 (the cases obtained by changing the indices
3 ↔ 4 are excluded similarly). We will consider the first case and the exclusion of
the second case is similar. To this end, assume that a3 = a1, b3 = b1, and a2 = a4,
b2 = −b4. Then, condition (2) reads as∣∣∣∣(b1 − ξ · b1

ξ · a1
a1

)
−
(
b2 −

ξ · b2
ξ · a2

a2

)∣∣∣∣ =

∣∣∣∣(b1 − ξ · b1
ξ · a1

a1

)
+

(
b2 −

ξ · b2
ξ · a2

a2

)∣∣∣∣ , ∀ξ ∈ U.
It is satisfied only, provided

(6)
(
b1 −

ξ · b1
ξ · a1

a1

)
·
(
b2 −

ξ · b2
ξ · a2

a2

)
= 0 ∀ξ ∈ U.
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(Observe that (6) holds in the case d ≥ 4, dim(span(l1, l2)) = 4, and span(a1, b1) ⊥
span(a2, b2)).

We show that (6) leads to a contradiction in the case dim(span(l1, l2)) = 3. We
may assume that d = 3. We observe that indeed span(a1, b1) = span(a2, b2). Passing
to the common denominator in (6) and using analiticity, we have

(b1 · b2)(ξ · a1)(ξ · a2)− (b1 · a2)(ξ · a1)(ξ · b2)−

(a1 · b2)(ξ · b1)(ξ · a2) + (a1 · a2)(ξ · b1)(ξ · b2) = 0 ∀ξ ∈ E3.

Since d = 3 and, by the assumption, ai · bi = 0one of the values b1 · b2, b1 · a2,
a1 · b2, a1 · a2 is not zero. Hence, the left-hand side of the previous equation is not
identically zero. Without loss of generality, b1 · b2 6= 0. Then, the expression

−(a1 · b2)(ξ · b1)(ξ · a2) + (a1 · a2)(ξ · b1)(ξ · b2)
is divisible by ξ · a1, and, as a consequence,

ξ · ((a1 · a2)b2 − (a1 · b2)a2)
is divisible by ξ · a1. This gives

(7) (a1 · a2)b2 − (a1 · b2)a2 = µa1

for some µ ∈ R.
Observe that µ 6= 0. Indeed, if µ = 0, we have a1 ·a2 = 0, a1 ·b2 = 0, since a2 ⊥ b2.

Then (6) implies

(b1 · b2)(ξ · a1)(ξ · a2)− (b1 · a2)(ξ · a1)(ξ · b2) = 0, ∀ξ ∈ E3,

or, equivalently

(b1 · b2)(ξ · a2) = (b1 · a2)(ξ · b2), ∀ξ ∈ E3.

The last condition is not possible, due to a2 ⊥ b2. Thus, µ 6= 0.
Similarly, since

(b1 · b2)(ξ · a1)(ξ · a2)− (a1 · b2)(ξ · b1)(ξ · a2)
is divisible by ξ · a2, the expression

(ξ · b2)((a1 · a2)(ξ · b1)− (b1 · a2)(ξ · a1))
is divisible by ξ · a2 as well, and we have

(8) (a1 · a2)b1 − (b1 · a2)a1 = λa2,

for some λ ∈ R. Following an argument which is similar to the one above, it
can be shown that λ 6= 0. Notice that, by (7), a1 ∈ span(b2, a2); and, by (8),
b1 ∈ span(a1, a2), which implies that span(a1, b1) = span(a2, b2), due to the fact that
a1 is not parallel to a2.

Finally, denote

A(ξ) = (ξ · a1)b1 − (ξ · b1)a1, B(ξ) = (ξ · a2)b2 − (ξ · b2)a2.
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We know that for every ξ ∈ E3 these vectors belong to the same two-dimensional
subspace of E3. Using (6) and the analyticity of A(ξ) and B(ξ), we see that A(ξ)·ξ =
0 and B(ξ) · ξ = 0 for all ξ ∈ E3, i.e., A(ξ) and B(ξ) belong to ξ⊥. Moreover, due
to (6) they are orthogonal to each other. By taking ξ ∈ span(a1, b1), we obtain two
vectors that are orthogonal and parallel to each other at the same time. Hence, at
least one of them is zero, and we obtain a contradiction. The lemma is proved. �

Lemma 2.4. Let lp, lq, lr be three distinct lines in Ed and ξ ∈ Sd−1, such that ξ is
not orthogonal to li for i = p, q, r. Denote vi(ξ) = li ∩ ξ⊥. Then the set of directions
ξ ∈ Sd−1, such that non-zero vectors vq(ξ)− vp(ξ) and vr(ξ)− vp(ξ) are orthogonal,
is a nowhere dense subset Ypqr ⊂ Sd−1.

Proof. Let li(t) = bi + tai (t ∈ R; i = p, q, r), then vi(ξ) = bi − bi·ξ
ai·ξai. Consider a

function f : Sd−1 → R, defined as following

f(ξ) =

(
bq −

bq · ξ
aq · ξ

aq − bp +
bp · ξ
ap · ξ

ap

)
·
(
br −

br · ξ
ar · ξ

ar − bp +
bp · ξ
ap · ξ

ap

)
.

The condition of orthogonality of the given vectors in terms of ξ is f(ξ) = 0. By
geometrical considerations, f 6≡ 0 on Sd−1. Since ai · ξ 6= 0, then, multiplying both
sides by (ap · ξ)(aq · ξ)(ar · ξ), the condition is equivalent to a polynomial equation
of third degree in coordinates of ξ.

Using the argument which is similar to the one in Lemma 2.2, one can show that
the set of zeroes Zf ⊂ Sd−1 of f is nowhere dense on Sd−1.

�

We will use the well-known Minkowski theorem (see, for example, [K], Theorem
9, p. 282).

Theorem 3. Suppose that K and L are polytopes in Ed, d ≥ 2, and suppose also that
the facet unit normals n1, . . . , nl and corresponding facet areas c1, . . . , cl coincide,
then K coincides with L up to a translation.

Our last auxiliary result in this section is

Theorem 4 (see [M], Theorem 1.3). Let 2 ≤ j ≤ d − 1 and let f and g be two
continuous real-valued functions on Sd−1. Assume that for any j-dimensional sub-
space α and some vector aα ∈ α, the restrictions of f and g onto Sd−1 ∩ α satisfy
f(−u)+aα ·u = g(u) ∀u ∈ α∩Sd−1 or f(u)+aα ·u = g(u) ∀u ∈ α∩Sd−1. Then
there exists b ∈ Ed such that g(u) = f(u) + b · u ∀u ∈ Sd−1 or g(u) = f(−u) + b · u
∀u ∈ Sd−1.

We remark also that if all aα are zero, then b = 0 (see also Lemma 1 from [R2],
page 3431).
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3. Proof of Theorem 1

We start with the case 2 ≤ k = d− 1.

3.1. Main idea. We will show that for all directions ξ ∈ Sd−1, the projections of
polytopes onto ξ⊥ coincide up to a translation and a reflection in the origin. This
will be achieved in three steps that can be briefly sketched as follows.

Step 1. Let Y ⊂ Sd−1 be a closed set of directions ξ that are parallel to facets of
P or Q, and let U1 be any connected component of U = Sd−1 \ Y . We will prove
that, given any two vectors ξ1 and ξ2 in U1, we have ∂ξ1P = ∂ξ2P and ∂ξ1Q = ∂ξ2Q;
see Lemma 3.1.

Step 2. We will prove that the edges of the shadow boundaries ∂ξP and ∂ξQ, ξ ∈
U , are in a bijective correspondence. We will apply Lemma 2.1 to all corresponding
edges of ∂ξP and ∂ξQ to conclude that they are parallel and have equal length.

Step 3. We will show that the corresponding facets of projections Pξ and Qξ =
Tξ(Pξ), ξ ∈ U , are pairwise parallel. We will apply Minkowski’s Theorem to conclude
that Pξ and Qξ, ξ ∈ U , coincide up to a translation and a reflection in the origin.
Then, we will use the density argument to conclude that the last statement holds
for all directions ξ ∈ Sd−1.

Finally, we will apply Theorem 4 with f and g being the support functions of
polytopes.

3.2. Proof. Step 1. Fix any facet F of P or Q with an outer unit normal η. Any
direction ξ ∈ Sd−1 which is parallel to F belongs to η⊥. Since polytopes have a finite
number of facets, the set Y of all such directions ξ is a union of a finite number of
great subspheres of Sd−1. Denote U = Sd−1 \ Y . Since Y is closed, U is open.

Fix any ξ ∈ U . Any vertex vξ ∈ Pξ is a projection of some vertex (not an edge),
otherwise ξ is parallel to some facet. The same holds for edges of Pξ, i.e., a pre-image
of any edge of Pξ is an edge of P , otherwise ξ is parallel to some 2-dimensional face
of P .

Let U1 be any non-empty linearly connected component of U . Observe that it
is contained in an open hemisphere Sd−1ζ for some ζ ∈ Sd−1. Note also that U1 is
geodesically convex, i.e., for any two directions ξ1 and ξ2 in U1 there exists an arc
[ξ1, ξ2] of a great circle of Sd−1 such that [ξ1, ξ2] ⊂ U1. Indeed, since the boundary

∂U1 of U1 is a finite union of closed pieces of great subspheres of Sd−1, ∂U1 =
j⋃

k=1

Sk,

we see that U1 = Sd−1 ∩ H, where H is a finite convex intersection of j half-spaces
defined by hyperplanes, passing through the origin and containing Sk. Since H is
convex, the interval ξ1ξ2 connecting ξ1 and ξ2 belongs to H. The projection of this
interval onto Sd−1 is an arc [ξ1, ξ2] of the unit circle, which is contained in U1.

We have

Lemma 3.1. For any ξ1, ξ2 ∈ U1 the shadow boundaries coincide, ∂ξ1P = ∂ξ2P .
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Figure 1. Preserving of shadow boundaries.

Proof. Assume the opposite, there exist two distinct vectors ξ1, ξ2 ∈ U1, such that
∂ξ1P 6= ∂ξ2P . Then there exists x ∈ ∂ξ1P , but x 6∈ ∂ξ2P , and we may construct
two half-lines l1(t1) = x + t1ξ1, t1 ≥ 0, and l2(t2) = x + t2ξ2, t2 ≥ 0 (or t2 ≤ 0, if
necessary) to obtain

l1 ∩ intP = ∅ and l2 ∩ intP 6= ∅.

Take a small enough ε > 0, such that the ball B(x, ε) intersects only faces of P that
contain x (see Figure 1). Choose x2 ∈ l2∩intP∩B(x, ε) and x1 ∈ l1∩B(x, ε), x1 6= x.
Notice that x1 6∈ ∂P , otherwise x1−x

|x1−x| 6∈ U , which is not possible since ξ1 is parallel

to x1−x
|x1−x| .

We project the interval x1x2 = {tx1 + (1 − t)x2, t ∈ [0, 1]} onto Sd−1 and obtain

an arc ξ(t) = tx1+(1−t)x2−x
|tx1+(1−t)x2−x| of the unit circle span{ξ1, ξ2}∩Sd−1. On the other hand,

there exists a point x0, such that x0 = t0x1 + (1 − t0)x2 ∈ α for some t0 ∈ (0, 1),
where α ⊂ ∂P is a facet of P containing x0. We have ξ(t0) 6∈ U1, which contradicts
the fact that U1 is geodesically convex. �

Step 2. Our next goal is to show that the edges of shadow boundaries ∂ξP and
∂ξQ, ξ ∈ U1, are in a bijective correspondence. Moreover, we will prove that the
corresponding edges are parallel and have equal length.

Assume that for a fixed ξ ∈ U1 the projection Pξ has k vertices {(v1)ξ, (v2)ξ, . . . ,
(vk)ξ} which are the projections of k vertices {v1, v2, . . . , vk} of P . In each hyperplane
ξ⊥ we consider a rigid motion Tξ, such that Tξ(Pξ) = Qξ (if there are several such
Tξ, take any). It is clear that every vertex (vi)ξ ∈ Pξ is mapped onto some vertex
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Figure 2. Correspondence of vertices through projections

(ṽj)ξ = Tξ((vi)ξ) ∈ Qξ and every edge of Pξ is mapped onto some edge of Qξ

(notice also that the pre-image of any vertex of Qξ is a vertex of Q and the pre-
image of any edge of Qξ is an edge of Q). This implies that for any ξ ∈ U1 we
obtain a bijective correspondence fξ between the set of all vertices {v1, v2, ..., vk} of
the shadow boundary ∂ξP and the set of all vertices {ṽ1, ṽ2, ..., ṽk} of the shadow
boundary ∂ξQ.

Take a closed spherical cap with a non-empty interior W ⊂ U1. For any ξ ∈ W
we have at least one Tξ satisfying Tξ(Pξ) = Qξ. Hence, for any ξ ∈ W , we have at
least one map fξ : {v1, v2, ..., vk} → {ṽ1, ṽ2, ..., ṽk}, such that fξ(vi) = ṽσξ(i), and σξ
is a permutation of the set {1, 2, ..., k} satisfying (ṽσξ(i))ξ = Tξ((vi)ξ) (see Figure 2).
The set of all such possible maps {fξ}ξ∈W is finite. We have

W =
⋃
σ∈Pk

Vσ, Vσ = {ξ ∈ W : ∃fξ such that fξ(vi) = ṽσ(i) ∀i = 1, . . . , k},

where Pk is the set of all permutations of {1, 2, ..., k}.
Observe that each Vσ is a closed set (it might be empty). Indeed, let (ξk)

∞
k=1 be

a convergent sequence of points of a non-empty Vσ, and let lim
k→∞

ξk = ξ. We have

Tξk((vi)ξk) = (ṽσ(i))ξk , i.e.,

(9) Tξk(vi − (vi · ξk)ξk) = ṽσ(i) − (ṽσ(i) · ξk)ξk,

where σ is independent of ξk. For each ξ ∈ W extend the operator Tξ acting from ξ⊥

to ξ⊥ to the operator Tξ acting from Ed to Ed as Tξ(a) = Φξ(a)+bξ. Here, Φξ ∈ O(d)
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is defined as Φξ|ξ⊥ = ϕξ, Φξ(ξ) = ξ, where Tξ(aξ) = ϕξ(aξ) + bξ. Equation (9) in
terms of Tξk can be re-written as

Tξk(vi − (vi · ξk)ξk) = Φξk(vi)− (vi · ξk)ξk + bξk = ṽσ(i) − (ṽσ(i) · ξk)ξk.

Without loss of generality, both polytopes P and Q are located inside a large
ball. Hence, the entries {akij}k∈N, i, j = 1, 2, ..., d, of the matrix corresponding to

transformations Φξk and the coordinates bkj , j = 1, . . . , d of vector bξk are bounded

functions of ξk. By compactness, we can assume that all {akij}k∈N, and {bk}k∈N are

convergent to the corresponding entries of Φ̃ξ = limk→∞Φξk and b̃ξ = limk→∞ bξk
respectively. This yields

T̃ξ ((vi)ξ) = Φ̃ξ(vi − (vi · ξ)ξ) + b̃ξ = Tξ((vi)ξ) = ṽσ(i) − (ṽσ(i) · ξ)ξ = (ṽσ(i))ξ,

where T̃ξ = limk→∞ Tξk . In other words, there exists T̃ξ, such that the corresponding

f̃ξ satisfies f̃ξ(vi) = ṽσ(i),∀i = 1, . . . , k. This means that ξ ∈ Vσ and Vσ is a closed
set.

By the Baire category Theorem (see, for example, [R], pages 42-43) there exists
a permutation σo such that the interior Uo of Vσo is non-empty. (This could be also
easily seen as follows. Enumerate Pk, and take the first set Vσ1 . If its interior is
empty, it is nowhere dense, and for every open spherical cap B1 in W there exists a
smaller cap B2 that is free of points of Vσ1 , B2∩Vσ1 = ∅. Repeat the procedure with
Vσ2 and B2 instead of Vσ1 and B1. After finitely many steps, unless we meet some
Vσ with a non-empty interior, we will obtain a spherical cap that does not intersect
W , which is impossible).

Observe that if vi and vj are connected by an edge vivj ⊂ P , such that (vi)ξ(vj)ξ
is an edge of Pξ, ξ ∈ Uo, then ṽσ(i)ṽσ(j) is an edge of Q. Now, we can apply Lemma
2.1 to all such pairs of edges vivj ∈ ∂ξP and ṽσ(i)ṽσ(j) ∈ ∂ξQ for any ξ ∈ Uo ⊂ Sd−1.
We see that these edges are parallel and have equal length. Thus, all corresponding
edges belonging to the shadow boundaries ∂ξP and ∂ξQ, ξ ∈ Uo, are parallel and
have equal lengths. Applying Lemma 3.1, we conclude that the last statement holds
for U1 instead of Uo.

Step 3. We will show that the projections of both polytopes in the directions of
U1 coincide up to a translation and a reflection in the origin. To do this, we will
use Minkowski’s Theorem about uniqueness (up to a translation) of polytopes with
parallel facets having the same volume. Our polytopes will be Pξ and Qξ, ξ ∈ U1.

Fix any ξ ∈ U1. Then Pξ and Qξ are two (d − 1)-dimensional polytopes in ξ⊥,
such that Tξ(Pξ) = Qξ. Since the map Tξ is a bijection between the sets of all facets
of Pξ and Qξ, for any facet α of Pξ there exists a unique facet α̃ of Qξ such that
Tξ(α) = α̃.

We will show at first that α is parallel to α̃. Consider the (d − 2)-dimensional
affine subspaces Π, Π̃ of ξ⊥ such that α ⊂ Π and α̃ ⊂ Π̃. We claim that Π̃ is
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parallel to Π. In other words, the outer unit normals nα, nα̃ ∈ ξ⊥ of Π and Π̃ satisfy
nα̃ = ±nα.

To prove the claim, observe that there exist d − 2 linearly independent non-
zero directional vectors {(a1)ξ, . . . , (ad−2)ξ} of edges of α having a common ver-
tex, such that span{(a1)ξ, . . . , (ad−2)ξ} is parallel to Π (here, a directional vector
of an edge is any non-zero vector parallel to the edge). The directional vectors
of edges {(a1)ξ, . . . , (ad−2)ξ} are the projections of directional vectors of the edges
{a1, . . . , ad−2} ⊂ ∂ξP . The directional vectors {ã1, . . . , ãd−2} ⊂ ∂ξQ of the corre-
sponding edges are parallel, i.e., ai is parallel to ãi for i = 1, . . . , d − 2. The same
holds true for their projections onto ξ⊥, (ai)ξ is parallel to (ãi)ξ for i = 1, . . . , d− 2.

We conclude that for the (d−2)-dimensional affine subspace Π̃ containing α̃ we have
Tξ(Π) = Π̃ and Π̃ is parallel to span{(ã1)ξ, . . . , (ãd−2)ξ} = span{(a1)ξ, . . . , (ad−2)ξ}.
The claim is proved.

Since Tξ is an isometry, we have vold−2(α) = vold−2(α̃). Now assume that both
polytopes Pξ and Qξ have l facets {αi}li=1 ⊂ Pξ and {α̃i}li=1 ⊂ Qξ with corresponding
outer normals {ni}li=1 and {ñi}li=1. We will show that up to a nowehere dense subset
of directions ξ (defined below) the projections Pξ and Qξ are translates of each other
(up to a reflection in the origin). To be able to apply Minkowski’s Theorem to Pξ
and Qξ (or −Pξ and Qξ) we have to show that ni = ñi for all i = 1, . . . , l, or −ni = ñi
for all i = 1, . . . , l.

Assume that the last statement is not true, and let αi, αj ⊂ Pξ and α̃i, α̃j ⊂ Qξ,
be two pairs of facets such that αi ∩ αj 6= ∅, Tξ(αi) = α̃i, Tξ(αj) = α̃j, but ñi =
ni, ñj = −nj, (since Tξ is an isometry, α̃i ∩ α̃j 6= ∅). Consider two cases, ni · nj 6= 0
and ni · nj = 0. The first case ni · nj 6= 0 is impossible, for

ni · (−nj) = ñi · ñj = ϕξ(ni) · ϕξ(nj) = ϕTξ ϕξ(ni) · nj = ni · nj,

yields ni · nj = 0. Here ϕTξ stands for the transpose operator of ϕξ, and we used the

fact that ϕTξ ϕξ = I due to ϕξ ∈ O(d− 1, ξ⊥).
To exclude the case ni · nj = 0, we recall that the pre-image of any facet of Pξ or

Qξ is an (d − 2)-dimensional face of P or Q respectively. We apply Lemma 2.2 to
the pairs of subspaces that are parallel to all pairs of (d− 2)-dimensional faces of P
and Q. We obtain a closed nowhere dense subset Y1 ⊂ U , such that the normals of
the corresponding facets of Pξ and Qξ, ξ ∈ Y1, are orthogonal. Now we may repeat
our considerations for the case ni · nj 6= 0 on U1 \ Y1 instead of U1. We obtain that
for every ξ ∈ U1 \ Y1 only one of the choices ni = ñi for all i = 1, . . . , l, or −ni = ñi
for all i = 1, . . . , l, holds.

We conclude that for all ξ ∈ U1 \ Y1, we have ni = ñi for all i = 1, . . . , l, or
−ni = ñi for all i = 1, . . . , l. Also, recall that ci = c̃i for all i = 1, . . . , l, where
ci = vold−2(αi), c̃i = vold−2(α̃i); now we may apply Theorem 3 to Pξ and Qξ or to
−Pξ and Qξ.
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Thus, for every ξ ∈ U1 \Y1 there exists a vector bξ ∈ ξ⊥, such that Qξ = Pξ + bξ or
Qξ = −Pξ + bξ. We can repeat the above argument for every connected component
of U . We see that for every ξ ∈ U \ Y1 the supporting functions hP and hQ satisfy

(10) hQ(u) = hP (u) + bξ · u for any u ∈ ξ⊥,
or

(11) hQ(u) = hP (−u) + bξ · u for any u ∈ ξ⊥.
Here we used the fact that hPξ(u) = hP (u) ∀u ∈ ξ⊥, see ([Ga], (0.21), p.17).

It is not difficult to see that one of the above equalities (or both) hold for every
ξ ∈ Sd−1. Indeed, since Y ∪Y1 is nowhere dense on Sd−1, for any open neighborhood
Vξ ⊂ Sd−1 of any ξ ∈ Y ∪ Y1 we have Vξ ∩ U 6= ∅. Hence, there exists a sequence
{ξk}k∈N ⊂ U , such that limk→∞ ξk = ξ. By taking a convergent subsequence if
necessary, we conclude that (the argument is very similar to the one in the proof of
Lemma 6, p. 3435, [R2]) there exists a limit lim

k→∞
bξk = bξ ∈ ξ⊥ for ξ ∈ Y ∪ Y1, such

that (10) or (and) (11) holds.
To finish the proof in the case k = d − 1, we apply Theorem 4 with j = k, and

f = hP , g = hQ. We obtain that there exists b ∈ Ed such that hQ(u) = hP (u) + b · u
for all u ∈ Ed, or hQ(u) = hP (−u) + b · u for all u ∈ Ed. Using the well-known
properties of the support functions ([Ga], pp. 16-18) we obtain the desired result in
the case k = d− 1.

3.3. Proof of Theorem 1 in the case 2 ≤ k < d − 1. We use induction on
k. Let H be any (k + 1)-dimensional subspace of Ed. We apply the result for
d = k + 1 to the bodies P |H and Q|H and their projections (P |H)|J and (Q|H)|J
for all k-dimensional subspaces J ⊂ H. We obtain that P |H = Q|H + bH or
P |H = −Q|H + bH for all H. We proceed and the result follows after finitely many
steps. The proof of Theorem 1 is completed.

4. Proof of Theorem 2

We start with the case 2 ≤ k = d− 1.

4.1. Main idea. We will show that for all directions ξ ∈ Sd−1, the sections of
polytopes by ξ⊥ coincide up to a reflection in the origin. This will be achieved in
four steps, which can be briefly described as follows.

Step 1. Let Y ⊂ Sd−1 be a closed set of directions ξ for which ξ⊥ contains any of
the vertices of P or Q, and let U1 be any connected component of U = Sd−1 \ Y .
We will prove that given any two directions ξ1 and ξ2 in U1, the subspaces ξ⊥1 and
ξ⊥2 intersect the same set of edges of P (and Q); see Lemma 4.1.

Denote by E = E(U1) and Ẽ = Ẽ(U1) the sets of edges of P and Q that are
intersected by ξ⊥, ξ ∈ U1. Denote also by L = L(U1) and L̃ = L̃(U1) the sets of
lines containing the intersected edges from E and Ẽ.
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Step 2. We will prove that there exists an open non-empty subset Uo of U1 such
that for all directions ξ ∈ Uo all rigid motions Tξ “look alike”. More precisely, for
all ξ ∈ Uo and for any li ∈ L the vertices vi(ξ) = ξ⊥ ∩ li of sections P ∩ ξ⊥ are all

mapped into the vertices of Q ∩ ξ⊥ of the form ṽj(i)(ξ) = ξ⊥ ∩ l̃j(i), where the line

l̃j(i) ∈ L̃ is fixed and j = j(i) is independent of ξ.

Step 3. Using Lemma 2.3 we will show that the corresponding lines in L and L̃
coincide up to a reflection in the origin.

Step 4. We will apply Theorem 4 with j = d − 1, aα = 0, b = 0, and f and g
being the radial functions of polytopes.

4.2. Proof. Step 1. Consider any vertex v of P or Q. If a hyperplane ξ⊥ contains v
then ξ ·v = 0. Hence, the set of all such directions ξ is a sub-sphere v⊥∩Sd−1. Since
both polytopes have a finite number of vertices, the union Y of all such sub-spheres
is closed, hence its complement U = Sd−1 \ Y is open in Sd−1.

Fix any connected component U1 of U .

Lemma 4.1. For any two distinct vectors ξ1, ξ2 ∈ U1, the hyperplanes ξ⊥1 and ξ⊥2
intersect the same set of edges of P .

Figure 3. The sets A1 = {xy, yw,wu, ux}, A2 = {uw, ux, uy}.

Proof. Let Ai be the set of all interiors of all edges of P that have non-empty
intersections with ξ⊥i , i = 1, 2. We claim that A1 = A2.

Assume that A1 6= A2 (see Figure 3). Then, there exists an edge xy such that
xy ∩ ξ⊥2 = ∅, xy ∩ ξ⊥1 = z, for some point z ∈ xy. Assume also that xy lies on a line
l, l(s) = b + sa, a, b ∈ Ed, s ∈ R. To prove the claim consider a continuous path
ξ(t) along the shortest arc [ξ1ξ2]⊂ U1, such that ξ1 = ξ(0), ξ2 = ξ(1) (since U1 is
geodesically convex, [ξ1ξ2] ∈ U1).
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For any t ∈ (0, 1), the intersection of ξ(t)⊥ with l, if exists, can be found as

r(t) = b− ξ(t)·b
ξ(t)·aa. In particular, z = r(0) = b− ξ(0)·b

ξ(0)·aa ∈ xy and r(1) = b− ξ(1)·b
ξ(1)·aa 6∈ xy.

Assume that there exists t1 ∈ (0, 1] such that ξ(t1)
⊥ is parallel to l, i.e., ξ(t1)·a = 0

(note that there is at most one such value t1, since [ξ1ξ2] and a⊥ intersect at most at
one point). In this case function d(t) = |r(t)− r(0)| has a vertical asymptote at t1,
which implies that there exists a small enough δ > 0, such that d(t1 − δ) > |x− y|,
i.e., r(t1 − δ) 6∈ xy. Notice that ξ(t1 − δ) is not orthogonal to a, so line l is not
parallel to hyperplane ξ(t1 − δ)⊥, i.e., l ∩ ξ(t1 − δ)⊥ 6= ∅.

Since r(t) is continuous on [0, t1−δ], there exists t0 ∈ (0, t1−δ), such that r(t0) = x
(or y). This gives ξ(t0) ∈ Y , which leads to a contradiction.

If ∀t ∈ (0, 1], ξ(t) · a 6= 0, repeat the previous argument with δ = 0. �

Step 2. For any ξ ∈ U1 the vertices vi of P ∩ ξ⊥ are the intersections of ξ⊥ with
lines li ∈ L and the vertices ṽi of Q∩ ξ⊥ are the intersections of ξ⊥ with lines l̃i ∈ L̃.
Since a rigid motion Tξ maps the vertices of P ∩ξ⊥ onto the vertices of Q∩ξ⊥, there
exists a one to one correspondence between these sets of vertices. Hence, there also
exists a one to one correspondence between the lines in L and L̃ (see Figure 4).

Figure 4. Correspondence of lines containing edges through the sections.

Let L ={li}ki=1 and L̃ ={l̃i}ki=1. Then for every ξ ∈ U1, there exists at least one
rigid motion Tξ that maps any vertex vi(ξ) = ξ⊥ ∩ li of P ∩ ξ⊥ into the vertex

ṽj(ξ) = ξ⊥ ∩ l̃j of Q ∩ ξ⊥, j = j(i, ξ). Hence, there is a permutation σξ ∈ Pk of the

set {1, . . . , k} and the map fξ : L→ L̃ such that fξ(li) = l̃σξ(i), σξ(i) = j(i, ξ).
We claim that there exists an open non-empty subset Uo of U1 and a fixed per-

mutation σ = σ(Uo) ∈ Pk such that

(12) fξ(li) = l̃σ(i) ∀ξ ∈ Uo, ∀i = 1, . . . , k.
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Take a closed spherical cap with a non-empty interior W ⊂ U1. The set of all
possible maps {fξ}{ξ∈W} is finite. Hence,

W =
⋃
σ∈Pk

Vσ, Vσ = {ξ ∈ W : ∃fξ such that fξ(li) = l̃σ(i) ∀i = 1, . . . , k}.

Observe each Vσ is a closed set (it might be empty). Indeed, let (ξk)
∞
k=1 be

a convergent sequence of points of a non-empty Vσ, and let lim
k→∞

ξk = ξ. Then

fξk(li) = l̃σ(i). In other words, for the corresponding vertices vi(ξk) and ṽσ(i)(ξk) we
have

(13) Tξk(vi(ξk)) = ṽσ(i)(ξk), vi(ξk) = li ∩ ξ⊥k , ṽσ(i)(ξk) = l̃σ(i) ∩ ξ⊥k ,
where σ is independent of ξk. Arguing as in the case of projections (see Step 2) in
the proof of Theorem 1), we extend the operator Tξ : ξ⊥ → ξ⊥, ξ ∈ W , to the one
acting on the whole space Tξ :Ed → Ed, ξ ∈ W , by the formula Tξ(a) = Φξ(a) + bξ.
Here, Φξ ∈ O(d) is defined as Φξ|ξ⊥ = ϕξ, Φξ(ξ) = ξ, where Tξ(aξ) = ϕξ(aξ) + bξ.
Writing (13) in terms of Tξk we have

Tξk(li ∩ ξ⊥k ) = Φξk(li ∩ ξ⊥k − li ∩ ξ⊥) + Φξk(li ∩ ξ⊥) + bξk = l̃σ(i) ∩ ξ⊥k .
Without loss of generality, both polytopes P and Q are located inside a large ball.
Hence, the entries {akij}k∈N, i, j = 1, 2, . . . , d, of the matrix corresponding to the

transformation Φξk , and the coordinates bkj , j = 1, 2, . . . , d, of the vector bξk are

bounded functions of ξk. By compactness, we can assume that {akij}k∈N and bkj are

convergent to the corresponding entries of Φ̃ξ = limk→∞Φξk and b̃ξ = limk→∞ bξk
respectively. This yields

T̃ξ(li ∩ ξ⊥) = Φ̃ξ(li ∩ ξ⊥) + b̃ξ = lσ(i) ∩ ξ⊥,

where T̃ξ = limk→∞ Tξk . Hence, there exists T̃ξ, such that the corresponding f̃ξ
satisfies f̃ξ(li ∩ ξ⊥) = lσ(i) ∩ ξ⊥, ∀i = 1, . . . , k. This means that ξ ∈ Vσ and Vσ is a
closed set.

By the Baire category Theorem (we argue as in Step 2 in the proof of Theorem 1),
there exists a permutation σo such that the interior int(Vσo) is non-empty. Hence,
(12) holds with σ = σo and Uo = int(Vσo).

Step 3. By Lemma 4.1 the set of edges intersected by ξ⊥, ξ ∈ Uo, coincides with
the set of edges intersected by ξ⊥, ξ ∈ U1. To show that the corresponding lines in
L and L̃ coincide up to a reflection in the origin, we will consider two cases: at least
two lines in L are not parallel, or all lines in L are parallel.

Let ξ ∈ Uo and let σ be as in (12). If at least two lines from L, say l1, l2, are
not parallel, we apply the second part of Lemma 2.3 to the pair of lines (l1, l2)
with vertices v1(ξ) = ξ⊥ ∩ l1, v2(ξ) = ξ⊥ ∩ l2 and the corresponding pair of lines

(l̃σ(1), l̃σ(2))∈ L̃ with vertices ṽσ(1)(ξ) = ξ⊥ ∩ l̃σ(1), ṽσ(2)(ξ) = ξ⊥ ∩ l̃σ(2). We see that
the lines coincide up to a reflection in the origin.
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Assume that l1 = l̃σ(1) and l2 = l̃σ(2). Then we choose any other line lm in L,
such that lm 6‖ l1 (if such lm does not exists, choose lm 6‖ l2). Then we apply the
second part of Lemma 2.3 to the pair (lm, l1). Recall that the permutation σ is the
same in all ξ⊥, such that ξ ∈ U1, and we already have that lσ(1) = l1. This implies

that l̃σ(m) = lm, since none of the lines passes through the origin, i.e., li 6= −li or

l̃j 6= −l̃j for any i or j. We can repeat this argument in the case when l̃σ(1) = −l1
and l̃σ(2) = −l2 to conclude that l̃σ(m) = −lm for any other line lm from L. Thus,

(14) lj = l̃σ(j) ∀j = 1, . . . , k or lj = −l̃σ(j) ∀j = 1 . . . , k.

Suppose now that for all ξ ∈ U1, ξ
⊥ intersects only parallel lines in L. We claim

that (14) holds in this case as well.
Consider a triple of lines lp, lq, lr ∈ L, such that vi(ξ) = li ∩ ξ⊥, (i = p, q, r) are

vertices of P ∩ ξ⊥. Notice that in this case the triple doesn’t belong to a single
two-dimensional plane. Apply Lemma 2.3 to the pairs lp, lq and lp, lr, on the open
set ξ ∈ U1 \ (U1 ∩Ypqr). Here Ypqr is a nowhere dense subset obtained from applying
Lemma 2.4 to the above triple. Assume that this yields

lσ(p) = −lp + cpq, lσ(q) = −lq + cpq, cpq ∈ Ed,

but

lσ(p) = lp + bpr, lσ(r) = lr + bpr, bpr ∈ Ed.

Then consider two triangles vp(ξ)vq(ξ)vr(ξ) and ṽσ(p)(ξ)ṽσ(q)(ξ)ṽσ(r)(ξ) in ξ⊥ (see
Figure 5). Notice that, by Lemma 2.4, angle ∠vq(ξ)vp(ξ)vr(ξ) 6= π

2
.

Figure 5. Tξ (vp(ξ)vq(ξ)vr(ξ)) 6= ṽσ(p)(ξ)ṽσ(q)(ξ)ṽσ(r)(ξ)
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On the other hand, since ∠vq(ξ)vp(ξ)vr(ξ) 6= ∠ṽσ(q)(ξ)ṽσ(p)(ξ)ṽσ(r)(ξ), these trian-
gles are not congruent under the fixed permutation σ, which contradicts the condi-
tion of congruency of P ∩ ξ⊥ and Q ∩ ξ⊥. Hence, for the triples we have

lσ(p) = lp + bpr, lσ(q) = lq + bpr, lσ(r) = lr + bpr, bpr = b ∈ Ed,

or

lσ(p) = −lp + cpr, lσ(q) = −lq + cpr, lσ(r) = −lr + cpr, cpr = b ∈ Ed.

Now we can repeat the same argument for any similar triples of lines in L and
L̃. Since L contains a finite number of lines, we exclude a finite number of sets
{Ypqr}lp,lq ,lr∈L obtained from Lemma 2.4. Recall that each of these sets is closed and

nowhere dense on Sd−1. We conclude that L̃ = L + b or L̃ = −L + b. Assume that
L̃ = L+ b, since we can always consider polytope −Q instead of Q. We claim that
b = 0.

Consider all edges of P that have a common vertex q with the edge wi ⊂ li ∈ L,
say, wp, p = 1, . . . , s(i).

Consider also all lines lp containing q, and let Ui,p be the corresponding non-empty
connected component of U for which span{li, lp} 6⊂ ξ⊥ for all ξ ∈ Ui,p (since the
interior of the solid angle Aq with vertex at q and edges w1, . . . , ws(i) has dimension
d, and dim ξ⊥ = d − 1, this connected component always exists). In particular,
dim(span(li, lp, O)) = 3.

We apply the third part of Lemma 2.3 to the pairs (li, lp) and (l̃σ(i), l̃σ(p)) and

the corresponding vertices vi(ξ) = ξ⊥ ∩ li, vp(ξ) = ξ⊥ ∩ lp and ṽσ(i)(ξ) = ξ⊥ ∩ l̃σ(i),
ṽσ(p)(ξ) = ξ⊥ ∩ l̃σ(p). Here the lines li and l̃σ(i) belong to the corresponding sets of

lines L(Ui,p) and L̃(Ui,p), and σ is the fixed permutation analogous to the one in
(12).

If there exists i, such that for the line li ∈ L Lemma 2.3 gives li = l̃σ(i), lp = l̃σ(p),
for all p = 1, . . . , s(i), then b = 0. Indeed, in this case both polytopes P and Q have
a common solid angle Aq containing q. Let H ⊃ li, H ∩ P = wi, be a supporting
hyperplane to both P and Q with an inner (with respect to P ) unit normal nH .
We will consider two cases, nH · b > 0 and nH · b < 0, and show that both are
impossible (by changing H slightly we can assume that nH · b 6= 0). By the above,
P ⊂ conv(l1, . . . , lk) and Q ⊂ conv(lσ(1), . . . , lσ(k)) = b+conv(l1, . . . , lk). If nH ·b > 0,
then Q should lie in the translated half-space H+ b, where H is the half-space with
boundary H containing P and Q. Since Q contains wi this is impossible, unless
b = 0. If nH · b < 0, then Q contains Aq and wi + b, which contradicts the convexity
of Q. Hence, b = 0.

If for every i = 1, . . . , k (for every line li ∈ L) there exists p = p(i), p = 1, . . . , s(i),

for which Lemma 2.3 yields li = −l̃σ(i), lp = −l̃σ(p), we have li = −l̃σ(i) for all
i = 1, . . . , k.

Thus, (14) holds in the case when all lines in L are parallel as well.
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Step 4. We proved that for any ξ ∈ Ui the corresponding lines L and L̃ that are
intersected by ξ⊥ satisfy (14). This implies that for any vertex vi(ξ) ∈ P ∩ ξ⊥ there
exists a vertex vσ(i)ξ(ξ) ∈ Q ∩ ξ⊥ such that

vi(ξ) = ṽσ(i)(ξ) ∀i = 1, . . . , k or vi(ξ) = −ṽσ(i)(ξ) ∀i = 1, . . . , k.

Since any convex polytope is a convex hull of its vertices, we conclude that

Q ∩ ξ⊥ = P ∩ ξ⊥ ∀ξ ∈ U or Q ∩ ξ⊥ = −P ∩ ξ⊥ ∀ξ ∈ U.
This implies that for all ξ ∈ U \ (Y ∪ Y1) the radial functions of P and Q satisfy
ρP (u) = ρQ(u) for all u ∈ ξ⊥ or ρP (−u) = ρQ(u) for all u ∈ ξ⊥. Since the radial
functions are continuous, we can prove that the same holds for any ξ ∈ Y ∪ Y1, and
hence for all ξ ∈ Sd−1. Finally, we can apply Theorem 4 with j = d− 1, aα = 0, to
conclude that ρP (u) = ρQ(u) for all u ∈ Sd−1 or ρP (u) = ρQ(−u) for all u ∈ Sd−1(or
see Lemma 1 in [R2]) . Theorem 2 is proved in the case k = d− 1.

4.3. Proof of Theorem 2 in the case 2 ≤ k < d−1. We use induction on k. Let
H be any (k + 1)-dimensional subspace of Ed. We apply the result for d = k + 1 to
the bodies P ∩H and Q∩H and their sections (P ∩H)∩ J and (Q∩H)∩ J for all
k-dimensional subspaces J ⊂ H. We obtain that P ∩H = Q∩H or P ∩H = −Q∩H
for all H. We proceed and the result follows after finitely many steps. The proof of
Theorem 2 is finished.
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