ARE L?>-BOUNDED HOMOGENEOUS SINGULAR INTEGRALS
NECESSARILY LP-BOUNDED?
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ABSTRACT. We present a dyadic one-dimensional version of the construction of
even integrable functions Q on the unit sphere S"~! with mean value zero satisfying

1
es sup / |2(0)] log —— df < +o0,
¢esn—1.Jgn-1 |9 . £|

such that the singular integral operator Tq, given by convolution with the distribu-
tion p.v. Q(z/|x])|x|~™ is bounded on LP(R™) if and only if p = 2.

1. INTRODUCTION AND STATEMENTS OF RESULTS

Let Q be an even complex-valued integrable function on the sphere S"!, with
mean value zero with respect to the surface measure. The classical theory of singu-
lar integral operators says that the Calderén and Zygmund principal-value singular
integral initially defined for functions f in the Schwartz class S(R")

0 To(f) (@) =ty [ QYD i,y ay,

e=0 lyl"
ly|>¢
is given by a convolution with the distribution p.v.Q(z/|z|)|z|™", whose Fourier
transform is the homogeneous of degree zero function

@ m© = o0/l O = [ 0O)lon g b

Thus, the L? boundedness of Ty is equivalent to the condition that m(Q) is an
essentially bounded function, i.e. m(Q2) € L>*(R"). The theory of singular integrals
of the form (1) was developed by Calderén and Zygmund [1], [2] who established
their L” boundedness in the range 1 < p < oo for Q in Llog L(S"™1). Tt was
proved by Weiss and Zygmund [8] that T, may be unbounded even on L? for {2
in L(log L)'=¢(S™!) when € > 0. Thus the Llog L condition on {2 is the sharpest
possible, in this sense, that implies the LP boundedness for in the whole range of
p € (1,00). The weak type (1,1) boundedness of such singular integrals with € in
Llog L(S™ ') was studied much later by Christ and Rubio de Francia [3] and Seeger
[7].
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In [5] the following result was established:

Theorem 1. There is an integrable function €2 with mean value zero on the unit
sphere S, satisfying

(3) es sup /Sn1 1€2(0)| log

gesn—1

df < oo,

1
€ -0l
but such that Tq is LP bounded exactly when p = 2.

In this note we consider the one-dimensional dyadic model D¢, of T,

(4) ﬁg\f(x) = m(Q)(x)]?(x), m(Q)(z) = xp1(x) Z /IQ(y)dy, z € R.

I>x

Here the sum is extended over all dyadic subintervals I of [0, 1], and €2 is a nonnegative
function in L'([0, 1]). We observe that

;/lﬁ(y)dy =/1

provided x does not belong to a set of ends of dyadic intervals. We prove the following

1

> xi()Qy)dy < / log

I>zy

Q(y)dy,
|z — 9| ()

Theorem 2. There exists a nonnegative function Q € L*([0,1]) such that m(2) is
bounded and is not a LP Fourier multiplier for any p # 2.

To show that the multiplier norm ||m(€2)|| a, (w) is infinite for p # 2, we use deLeeuw
[4] type result which comes from the work of Lebedev and Olevski [6]:

Theorem 3. Let b be a function on the real line and let y; be a sequence of real
numbers such that y;11 — y; is a constant for all j. Assume that the function b is
requlated at the points y;, i.e. the average of left and right limits of b at each y;
coincides with b(y;). Then we have

161122, ) = [I{0(3) }51las, (29

Here [[{b(y;)};lla1,(z) is the norm of the operator f — 3= b(y;) f(j)e*™* acting on
functions f on the circle [0, 1]. For compactly supported sequences this norm is at
most the size of the support of the sequence times its L norm.

Given a compactly supported sequence {e¢;}; with a large norm |[{€;};|as,(z) we
will construct an integrable function (2 and take an arithmetic progression {z,}; such

that [[{m(Q)(x;)}lla,@) > cll{e;}llagz)-
2. PROOF OF THEOREM 2

To pick up a sequence {¢;}; with a large multiplier norm, we use the fact that the
Riesz basis of LP(T), {€*™*}2° _ is not unconditional for p # 2. That means that

for any K > 0 we can find a compactly supported sequence a; and a sequence ¢; of
0’s and 1’s such that

(5) 1> ejase®™ ey > K1Y a;e*™ ||,
J J
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Consider a decreasing sequence p; > py > p3 > ... which converges to 2 and let aé?

be a sequence supported in {1,...,l;} and 52‘-’ be a sequence of zeros and ones such
that (5) holds with p = px and K =k, i.e.

Uy
(6) ||Z€ BT = KLY ake™ |,
j=1

To construct €2 (depending on €%), we look at m(Q) where Q = xj, is the char-
acteristic function of any dyadic interval Iy C [0,1] of length 27%. We observe that
m(xg,)(x) = (ig+1)27% for & € Iy, and m(xy,)(y) < ne2~%, for y outside I,. Here ny
is the number of dyadic subintervals of [0, 1] that contain both I and y. This means
that given any dyadic interval I and any 6 > 0, one can find a centrally located
(within 7) dyadic subinterval J of I of length 277 and a function Qs; = 27y /(5 + 1)
such that m(£2s;)(z) = 1 when € J and m(£25)(z) < § when z is not in I. Note
that the L' norm of Qs is 1/(j + 1), j = —log|J|, and it can be made small.

We set
Q=) ", Q=) % 5,
k=0

where €, are supported in [, the dyadic subintervals of [0, 1],
I = [071/2]7 I = [1/273/4]7 I3 = [3/477/8]a Iy = [7/87 15/16]7 ey
and % are as in (6). To define Qj, , 7, , we pick irrational points
Tl < Tpo < - < Tg,

inside [ so that the intervals spanned by two consecutive such points have the same
length. We choose small disjoint subintervals I ; of I, centered at the points x ; for
all j €{1,2,...,l;}. Next, we select an interval Ji ; C I} ; such that the function

Xy ;

oktis = 17 Tog(1/ 1) + 1)
satisfies
(7) m(Q5k,ij,g)( x)=1 when x € Jij,
and
(8) m(Qs,,0,,)(@) <0y =2"27"F/I7 when  z ¢ I

We can also assume that Jj, ; satisfies
(9) log

Observe that (9) implies

= 1
I = ZZ SR = 2 <

> k2.
| k]
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Observe also that m(2) is a bounded function. Indeed, let = € [0,1]. Then z € I,
for some n > 1, and

(10) m(Q)(JT) < Z Zm(Q(sk,jy]kJ + Zm On.j> )

k=1k#n j=1

The first term in the right hand side of (10) is bounded due to the choice of I} ; and
dk.j, see (8). To estimate the second one, we consider two cases, a) x € I,, 5 \ Jy s for
some fixed s =1,2,...,1,, and b) x € J, 5, or x € I,,\ I,, 5. We write

ln ln

(11) Y ms,,0,)@) = Y m(Qs,,0,)(@) +m(s, 5, (@)

=1 =15

In the case a) we have

< 00,

’Jn73| 2132 J, 1
Q < Q d < n,s
i) € 2, e 0y < e R

and the boundedness of the right-hand side in (11) follows from (8). In the case b)
we use (7) and (8). Thus, the second term in (10) is bounded and m(£2) is bounded.
It remains to show that m(2) is not an LP Fourier multiplier for any p # 2. We
fix a p > 2 and pick a kg so that 2 < py, < p. Then ||m(2)||r,®r) > Hm<Q)HMpkO(R)
and it suffices to show that the latter can become arbitrarily large.
Observe that the function m(Q) is regulated at the points {zy, j}J 1, (this can

be easily seen by splitting m(€2)(xy, ;) into the sums similar to (10), (11)), and by
Theorem 3 we have
!
Im()a,, ®) = H{m () (@ro,) Y24l (2)-
But the last expression is at least as big as
I
Hm Q) (r0) 121ty 2 = 1LY M) (205 }k:OIHMpk.O(Z)'
k#ko
Note that the functions >, . m(fz,) are constant on the interval Ij, and therefore

the sequence {3, m(Q Ik)(ffko,j)}?:ol is constant of length l;,. The multiplier norm
of this sequence is a constant c¢(py,) which is bounded above by a constant c¢(p) =
cot(m/2p) independent of ky. Now

m(Q, ) (@) = € + B,

where

E]]?O = Z Egpm(QékO,j’Jko 3 )(‘rkO .7)

1</ £7 <k,
and (8) implies [Ef°| < 27277=ho /. ||{Ek°}lk0 aty,,, 2) < 272797% due to the com-

pactness of the support of {Ejko}] We conclude that |[m(Q)|[a,®) = ko — 1 — ¢(p)
and this can be made arbitrarily large. Hence ||[m(Q)||a,®) = o0.
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