ARE L^{2}-BOUNDED HOMOGENEOUS SINGULAR INTEGRALS NECESSARILY L^{p}-BOUNDED?

LOUKAS GRAFAKOS, PETR HONZÍK, AND DMITRY RYABOGIN

Abstract

We present a dyadic one-dimensional version of the construction of even integrable functions Ω on the unit sphere \mathbf{S}^{n-1} with mean value zero satisfying $$
\underset{\xi \in \mathbf{S}^{n-1}}{\operatorname{es} \sup _{\mathbf{S}^{n-1}}} \int_{|\Omega(\theta)| \log \frac{1}{|\theta \cdot \xi|} d \theta<+\infty, ~}
$$ such that the singular integral operator T_{Ω} given by convolution with the distribution p.v. $\Omega(x /|x|)|x|^{-n}$ is bounded on $L^{p}\left(\mathbf{R}^{n}\right)$ if and only if $p=2$.

1. Introduction and statements of results

Let Ω be an even complex-valued integrable function on the sphere \mathbf{S}^{n-1}, with mean value zero with respect to the surface measure. The classical theory of singular integral operators says that the Calderón and Zygmund principal-value singular integral initially defined for functions f in the Schwartz class $\mathcal{S}\left(\mathbf{R}^{n}\right)$

$$
\begin{equation*}
T_{\Omega}(f)(x)=\lim _{\varepsilon \rightarrow 0} \int_{|y|>\varepsilon} \frac{\Omega(y /|y|)}{|y|^{n}} f(x-y) d y \tag{1}
\end{equation*}
$$

is given by a convolution with the distribution p.v. $\Omega(x /|x|)|x|^{-n}$, whose Fourier transform is the homogeneous of degree zero function

$$
\begin{equation*}
m(\Omega)(\xi):=\left(\text { p.v. } \Omega(x /|x|)|x|^{-n}\right)^{\wedge}(\xi)=\int_{\mathbf{S}^{n-1}} \Omega(\theta) \log \frac{1}{|\xi \cdot \theta|} d \theta \tag{2}
\end{equation*}
$$

Thus, the L^{2} boundedness of T_{Ω} is equivalent to the condition that $m(\Omega)$ is an essentially bounded function, i.e. $m(\Omega) \in L^{\infty}\left(\mathbf{R}^{n}\right)$. The theory of singular integrals of the form (1) was developed by Calderón and Zygmund [1], [2] who established their L^{p} boundedness in the range $1<p<\infty$ for Ω in $L \log L\left(\mathbf{S}^{n-1}\right)$. It was proved by Weiss and Zygmund [8] that T_{Ω} may be unbounded even on L^{2} for Ω in $L(\log L)^{1-\varepsilon}\left(\mathbf{S}^{n-1}\right)$ when $\varepsilon>0$. Thus the $L \log L$ condition on Ω is the sharpest possible, in this sense, that implies the L^{p} boundedness for in the whole range of $p \in(1, \infty)$. The weak type (1,1) boundedness of such singular integrals with Ω in $L \log L\left(\mathbf{S}^{n-1}\right)$ was studied much later by Christ and Rubio de Francia [3] and Seeger [7].

[^0]In [5] the following result was established:
Theorem 1. There is an integrable function Ω with mean value zero on the unit sphere \mathbf{S}^{n-1}, satisfying

$$
\begin{equation*}
\underset{\xi \in \mathbf{S}^{n-1}}{\operatorname{es} \sup _{\mathbf{S}^{n-1}}} \int_{\mathbf{S}^{2}}|\Omega(\theta)| \log \frac{1}{|\xi \cdot \theta|} d \theta<\infty \tag{3}
\end{equation*}
$$

but such that T_{Ω} is L^{p} bounded exactly when $p=2$.
In this note we consider the one-dimensional dyadic model D_{Ω} of T_{Ω},

$$
\begin{equation*}
\widehat{D_{\Omega}} f(x)=m(\Omega)(x) \widehat{f}(x), \quad m(\Omega)(x)=\chi_{[0,1]}(x) \sum_{I \ni x} \int_{I} \Omega(y) d y, \quad x \in \mathbf{R} . \tag{4}
\end{equation*}
$$

Here the sum is extended over all dyadic subintervals I of $[0,1]$, and Ω is a nonnegative function in $L^{1}([0,1])$. We observe that

$$
\sum_{I \ni x} \int_{I} \Omega(y) d y=\int_{0}^{1} \sum_{I \ni x, y} \chi_{I}(y) \Omega(y) d y \leq \int_{0}^{1} \log \frac{1}{|x-y|} \Omega(y) d y
$$

provided x does not belong to a set of ends of dyadic intervals. We prove the following
Theorem 2. There exists a nonnegative function $\Omega \in L^{1}([0,1])$ such that $m(\Omega)$ is bounded and is not a L^{p} Fourier multiplier for any $p \neq 2$.

To show that the multiplier norm $\|m(\Omega)\|_{M_{p}(\mathbf{R})}$ is infinite for $p \neq 2$, we use deLeeuw [4] type result which comes from the work of Lebedev and Olevski [6]:
Theorem 3. Let b be a function on the real line and let y_{j} be a sequence of real numbers such that $y_{j+1}-y_{j}$ is a constant for all j. Assume that the function b is regulated at the points y_{j}, i.e. the average of left and right limits of b at each y_{j} coincides with $b\left(y_{j}\right)$. Then we have

$$
\|b\|_{M_{p}(\mathbf{R})} \geq\left\|\left\{b\left(y_{j}\right)\right\}_{j}\right\|_{M_{p}(\mathbf{Z})} .
$$

Here $\left\|\left\{b\left(y_{j}\right)\right\}_{j}\right\|_{M_{p}(\mathbf{Z})}$ is the norm of the operator $f \rightarrow \sum_{j} b\left(y_{j}\right) \widehat{f}(j) e^{2 \pi i j x}$ acting on functions f on the circle $[0,1]$. For compactly supported sequences this norm is at most the size of the support of the sequence times its L^{∞} norm.

Given a compactly supported sequence $\left\{\epsilon_{j}\right\}_{j}$ with a large norm $\left\|\left\{\epsilon_{j}\right\}_{j}\right\|_{M_{p}(\mathbf{Z})}$ we will construct an integrable function Ω and take an arithmetic progression $\left\{x_{j}\right\}_{j}$ such that $\left\|\left\{m(\Omega)\left(x_{j}\right)\right\}_{j}\right\|_{M_{p}(\mathbf{Z})} \geq c\left\|\left\{\epsilon_{j}\right\}_{j}\right\|_{M_{p}(\mathbf{Z})}$.

2. Proof of Theorem 2

To pick up a sequence $\left\{\epsilon_{j}\right\}_{j}$ with a large multiplier norm, we use the fact that the Riesz basis of $L^{p}(\mathbf{T}),\left\{e^{2 \pi i j x}\right\}_{j=-\infty}^{+\infty}$ is not unconditional for $p \neq 2$. That means that for any $K>0$ we can find a compactly supported sequence a_{j} and a sequence ε_{j} of 0 's and 1's such that

$$
\begin{equation*}
\left\|\sum_{j} \varepsilon_{j} a_{j} e^{2 \pi i j x}\right\|_{p} \geq K\left\|\sum_{j} a_{j} e^{2 \pi i j x}\right\|_{p} \tag{5}
\end{equation*}
$$

Consider a decreasing sequence $p_{1}>p_{2}>p_{3}>\ldots$ which converges to 2 and let a_{j}^{k} be a sequence supported in $\left\{1, \ldots, l_{k}\right\}$ and ε_{j}^{k} be a sequence of zeros and ones such that (5) holds with $p=p_{k}$ and $K=k$, i.e.

$$
\begin{equation*}
\left\|\sum_{j=1}^{l_{k}} \varepsilon_{j}^{k} a_{j}^{k} e^{2 \pi i j x}\right\|_{p_{k}} \geq k\left\|\sum_{j=1}^{l_{k}} a_{j}^{k} e^{2 \pi i j x}\right\|_{p_{k}} . \tag{6}
\end{equation*}
$$

To construct Ω (depending on ε_{j}^{k}), we look at $m(\Omega)$ where $\Omega=\chi_{I_{0}}$ is the characteristic function of any dyadic interval $I_{0} \subset[0,1]$ of length $2^{-i_{0}}$. We observe that $m\left(\chi_{I_{0}}\right)(x)=\left(i_{0}+1\right) 2^{-i_{0}}$ for $x \in I_{0}$, and $m\left(\chi_{I_{0}}\right)(y) \leq n_{0} 2^{-i_{0}}$, for y outside I_{0}. Here n_{0} is the number of dyadic subintervals of $[0,1]$ that contain both I_{0} and y. This means that given any dyadic interval I and any $\delta>0$, one can find a centrally located (within I) dyadic subinterval J of I of length 2^{-j} and a function $\Omega_{\delta, I}=2^{j} \chi_{J} /(j+1)$ such that $m\left(\Omega_{\delta, I}\right)(x)=1$ when $x \in J$ and $m\left(\Omega_{\delta, I}\right)(x) \leq \delta$ when x is not in I. Note that the L^{1} norm of $\Omega_{\delta, I}$ is $1 /(j+1), j=-\log |J|$, and it can be made small.

We set

$$
\Omega=\sum_{k=0}^{\infty} \Omega_{I_{k}}, \quad \Omega_{I_{k}}=\sum_{j=1}^{l_{k}} \varepsilon_{j}^{k} \Omega_{\delta_{k, j}, I_{k, j}} .
$$

where $\Omega_{I_{k}}$ are supported in I_{k}, the dyadic subintervals of $[0,1]$,

$$
I_{1}=[0,1 / 2], \quad I_{2}=[1 / 2,3 / 4], \quad I_{3}=[3 / 4,7 / 8], \quad I_{4}=[7 / 8,15 / 16], \quad \ldots .,
$$

and ε_{j}^{k} are as in (6). To define $\Omega_{\delta_{k, j}, I_{k, j}}$ we pick irrational points

$$
x_{k, 1}<x_{k, 2}<\cdots<x_{k, l_{k}}
$$

inside I_{k} so that the intervals spanned by two consecutive such points have the same length. We choose small disjoint subintervals $I_{k, j}$ of I_{k} centered at the points $x_{k, j}$ for all $j \in\left\{1,2, \ldots, l_{k}\right\}$. Next, we select an interval $J_{k, j} \subset I_{k, j}$ such that the function

$$
\Omega_{\delta_{k, j}, I_{k, j}}=\frac{\chi_{J_{k, j}}}{\left|J_{k, j}\right|\left(\log \left(1 /\left|J_{k, j}\right|\right)+1\right)}
$$

satisfies

$$
\begin{equation*}
m\left(\Omega_{\delta_{k, j}, I_{k, j}}\right)(x)=1 \quad \text { when } \quad x \in J_{k, j}, \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
m\left(\Omega_{\delta_{k, j}, I_{k, j}}\right)(x) \leq \delta_{k, j}=2^{-2-j-k} / l_{k}^{2} \quad \text { when } \quad x \notin I_{k, j} . \tag{8}
\end{equation*}
$$

We can also assume that $J_{k, j}$ satisfies

$$
\begin{equation*}
\log \frac{1}{\left|J_{k, j}\right|} \geq k^{2} l_{k} \tag{9}
\end{equation*}
$$

Observe that (9) implies

$$
\|\Omega\|_{1} \leq \sum_{k=1}^{\infty} \sum_{j=1}^{l_{k}} \frac{1}{\log \left(1 /\left|J_{k, j}\right|\right)} \leq \sum_{k=1}^{\infty} \frac{1}{k^{2}}<\infty
$$

Observe also that $m(\Omega)$ is a bounded function. Indeed, let $x \in[0,1]$. Then $x \in I_{n}$ for some $n \geq 1$, and

$$
\begin{equation*}
m(\Omega)(x) \leq \sum_{k=1, k \neq n}^{\infty} \sum_{j=1}^{l_{k}} m\left(\Omega_{\delta_{k, j}, I_{k, j}}\right)(x)+\sum_{j=1}^{l_{n}} m\left(\Omega_{\delta_{n, j}, I_{n, j}}\right)(x) \tag{10}
\end{equation*}
$$

The first term in the right hand side of (10) is bounded due to the choice of $I_{k, j}$ and $\delta_{k, j}$, see (8). To estimate the second one, we consider two cases, a) $x \in I_{n, s} \backslash J_{n, s}$ for some fixed $s=1,2, \ldots, l_{n}$, and b) $x \in J_{n, s}$, or $x \in I_{n} \backslash I_{n, s}$. We write

$$
\begin{equation*}
\sum_{j=1}^{l_{n}} m\left(\Omega_{\delta_{n, j}, I_{n, j}}\right)(x)=\sum_{j=1, j \neq s}^{l_{n}} m\left(\Omega_{\delta_{n, j}, I_{n, j}}\right)(x)+m\left(\Omega_{\delta_{n, s}, I_{n, s}}\right)(x) . \tag{11}
\end{equation*}
$$

In the case a) we have

$$
m\left(\Omega_{\delta_{n, s}, I_{n, s}}\right)(x) \leq \sum_{I \ni x, J_{n, s}} \int_{I} \Omega_{\delta_{n, s}, I_{n, s}}(y) d y \leq \frac{\left|J_{n, s}\right| \sum_{I \ni x, J_{n, s}} 1}{\left|J_{n, s}\right|\left(\log \left(1 /\left|J_{n, s}\right|\right)+1\right)}<\infty
$$

and the boundedness of the right-hand side in (11) follows from (8). In the case b) we use (7) and (8). Thus, the second term in (10) is bounded and $m(\Omega)$ is bounded.

It remains to show that $m(\Omega)$ is not an L^{p} Fourier multiplier for any $p \neq 2$. We fix a $p>2$ and pick a k_{0} so that $2<p_{k_{0}}<p$. Then $\|m(\Omega)\|_{M_{p}(\mathbf{R})} \geq\|m(\Omega)\|_{M_{p_{k_{0}}}}(\mathbf{R})$ and it suffices to show that the latter can become arbitrarily large.

Observe that the function $m(\Omega)$ is regulated at the points $\left\{x_{k_{0}, j}\right\}_{j=1}^{l_{k_{0}}}$, (this can be easily seen by splitting $m(\Omega)\left(x_{k_{0}, j}\right)$ into the sums similar to (10), (11)), and by Theorem 3 we have

$$
\|m(\Omega)\|_{M_{p_{k_{0}}}(\mathbf{R})} \geq\left\|\left\{m(\Omega)\left(x_{k_{0}, j}\right)\right\}_{j=1}^{l_{k_{0}}}\right\|_{M_{p_{k_{0}}}}(\mathbf{Z}) .
$$

But the last expression is at least as big as

$$
\left\|\left\{m\left(\Omega_{I_{k_{0}}}\right)\left(x_{k_{0}, j}\right)\right\}_{j=1}^{l_{k_{0}}}\right\|_{M_{p_{k_{0}}}}(\mathbf{Z})-\left\|\left\{\sum_{k \neq k_{0}} m\left(\Omega_{I_{k}}\right)\left(x_{k_{0}, j}\right)\right\}_{j=1}^{l_{k_{0}}}\right\|_{M_{p_{k_{0}}}}(\mathbf{Z})
$$

Note that the functions $\sum_{k \neq k_{0}} m\left(\Omega_{I_{k}}\right)$ are constant on the interval $I_{k_{0}}$ and therefore the sequence $\left\{\sum_{k \neq k_{0}} m\left(\Omega_{I_{k}}\right)\left(x_{k_{0}, j}\right)\right\}_{j=1}^{l_{k_{0}}}$ is constant of length $l_{k_{0}}$. The multiplier norm of this sequence is a constant $c\left(p_{k_{0}}\right)$ which is bounded above by a constant $c(p)=$ $\cot (\pi / 2 p)$ independent of k_{0}. Now

$$
m\left(\Omega_{I_{k_{0}}}\right)\left(x_{k_{0}, j}\right)=\epsilon_{j}^{k_{0}}+E_{j}^{k_{0}},
$$

where

$$
E_{j}^{k_{0}}=\sum_{1 \leq j^{\prime} \neq j \leq l_{k_{0}}} \epsilon_{j^{\prime}}^{k_{0}} m\left(\Omega_{\delta_{k_{0}, j^{\prime}}, I_{k_{0}, j^{\prime}}}\right)\left(x_{k_{0}, j}\right)
$$

and (8) implies $\left|E_{j}^{k_{0}}\right| \leq 2^{-2-j-k_{0}} / l_{k_{0}},\left\|\left\{E_{j}^{k_{0}}\right\}_{j=1}^{l_{k_{0}}}\right\|_{M_{p_{k_{0}}}}(\mathbf{Z}) \leq 2^{-2-j-k_{0}}$, due to the compactness of the support of $\left\{E_{j}^{k_{0}}\right\}_{j}$. We conclude that $\|m(\Omega)\|_{M_{p}(\mathbf{R})} \geq k_{0}-1-c(p)$ and this can be made arbitrarily large. Hence $\|m(\Omega)\|_{M_{p}(\mathbf{R})}=\infty$.

References

[1] A. P. Calderón and A. Zygmund, On the existence of certain singular integrals, Acta Math. 88 (1952), 85-139.
[2] A. P. Calderón and A. Zygmund, On singular integrals, Amer. J. Math. 78 (1956), 289-309.
[3] M. Christ and J.-L. Rubio de Francia, Weak type $(1,1)$ bounds for rough operators II, Invent. Math. 93 (1988), 225-237.
[4] K. deLeeuw, On L ${ }^{p}$ multipliers, Ann. Math, 81 (1964), 364-379.
[5] L. Grafakos, P. Honzík and D. Ryabogin, On the p-independence boundedness property of Calderon-Zygmund theory, Journal fur die Reine und Angewandte Mathematik, to appear.
[6] V. Lebedev and A. Olevskii, Idempotents of Fourier multiplier algebra, Geom. Funct. Anal. 4 (1994), 539-544.
[7] A. Seeger, Singular integral operators with rough convolution kernels, Jour. Amer. Math. Soc., 9 (1996), 95-105.
[8] M. Weiss and A. Zygmund, An example in the theory of singular integrals, Studia Math. 26 (1965), 101-111.

Loukas Grafakos, Department of Mathematics, University of Missouri, Columbia, MO 65211, USA

E-mail address: loukas@math.missouri.edu
Petr Honzík, Department of Mathematics, Michigan State University, East LansING, MI 48824, USA

E-mail address: petrhonz@math.msu.edu
Dmitry Ryabogin, Department of Mathematics, Kansas State University, Manhattan, KS 66503 USA

E-mail address: ryabs@math.ksu.edu

[^0]: 1991 Mathematics Subject Classification. Primary 42B20. Secondary 42E30.
 Key words and phrases. Homogeneous Calderón-Zygmund singular integrals, rough kernels.
 Grafakos' research was partially supported by the NSF under grant DMS0400387 and by the University of Missouri Research Council. Honzík was supported by 201/03/0931 Grant Agency of the Czech Republic. Ryabogin's research was partially supported by the NSF under grant DMS0400789.

