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Abstract. Let K and L be two convex bodies in R5 with countably
many diameters, such that their projections onto all 4 dimensional sub-
spaces containing one fixed diameter are directly congruent. We show
that if these projections have no rotational symmetries, and the projec-
tions of K,L on certain 3 dimensional subspaces have no symmetries,
then K = ±L up to a translation. We also prove the corresponding
result for sections of star bodies.

1. Introduction

In this paper we address the following problems (see [Ga, Problem 3.2,
page 125 and Problem 7.3, page 289]).

Problem 1. Suppose that 2 ≤ k ≤ n−1 and that K and L are convex bodies
in Rn such that the projection K|H is congruent to L|H for all H ∈ G(n, k).
Is K a translate of ±L?

Problem 2. Suppose that 2 ≤ k ≤ n− 1 and that K and L are star bodies
in Rn such that the section K∩H is congruent to L∩H for all H ∈ G(n, k).
Is K a translate of ±L?

Here we say that K|H, the projection of K onto H, is congruent to L|H
if there exists an orthogonal transformation ϕ ∈ O(k,H) in H such that
ϕ(K|H) is a translate of L|H; G(n, k) stands for the Grassmann manifold
of all k dimensional subspaces in Rn.

Several partial results are known for Problems 1 and 2. For symmetric
bodies, the answer is affirmative due to theorems of Aleksandrov (for Prob-
lem 1, see [A] and [Ga, Theorem 3.3.1, page 111]) and Funk (for Problem 2,
see [Ga, Theorem 7.2.6, page 281]). In the class of polytopes, the answer to
both problems is also affirmative [MyR]. If the projections are translates of
each other, or if the bodies are convex and the corresponding sections are
translates of each other, again a positive result is obtained (see [Ga, Theo-
rems 3.1.3 and 7.1.1] and [R1]). For history and additional partial results,
we refer the reader to [ACR], [My], [R], [R2].
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Hadwiger established that, for n ≥ 4 and k = n − 1, if the orthogonal
transformations between the projections are all translations, it is not neces-
sary to consider the projections onto all subspaces, but only all subspaces
containing a fixed line (see [Ha], and [Ga, pages 126–127]).

In this paper, we obtain several Hadwiger-type results for both Problems
when k = 4 in the case of direct congruence; the fixed line will be given by
the direction of one of the diameters of the body K. We follow the ideas
from [Go], [R] and [ACR], where similar results were obtained in the cases
k = 2, 3. The case k = 4 is harder, due to the fact that four dimensional
rotations are more difficult to handle than two or three dimensional ones.
Nevertheless, here we obtain the expected conclusion of Problems 1 and
2 that K = ±L up to a translation, while in [ACR] the conclusion was
that K = L or K = OL up to a translation, for a certain orthogonal
transformation O of Rn.

We observe that the assumption about countability of the sets of the
diameters of K and L can be weakened (for example, the set of diameters
may be taken to be contained in a countable union of great circles containing
ζ). Also, the set of bodies with countably many diameters contains the set
of all polytopes whose four dimensional projections have no rigid motion
symmetries, which is everywhere dense set in the class of convex bodies
with respect to the Hausdorff metric ( [Pa], see also [ACR, Proposition 2]).

1.1. Results about directly congruent projections. Let n ≥ 4 and
Sn−1 be the unit sphere in Rn. Given w ∈ Sn−1, let w⊥ be the (n − 1)
dimensional subspace of Rn that is orthogonal to w. We denote by dK(ζ) a
diameter of the body K which is parallel to the direction ζ ∈ Sn−1.

Let D and B are two subsets of H ∈ G(n, k), 3 ≤ k ≤ n− 1. We say that
D and B are directly congruent if ϕ(D) = B+ a for some vector a ∈ H and
some rotation ϕ ∈ SO(k,H). We also say that D has an SO(k) symmetry
(respectively, O(k) symmetry) if ϕ(D) = D + a for some vector a ∈ H and
some non-identical rotation ϕ ∈ SO(k,H) (respectively, in O(k,H)).

We prove the following 5 dimensional result.

Theorem 1. Let K and L be two convex bodies in R5 having countably
many diameters. Assume that there exists a diameter dK(ζ), such that the
side projections K|w⊥, L|w⊥ onto all subspaces w⊥ containing ζ are directly
congruent, see Figure 1. Assume also that these projections have no SO(4)
symmetries, and that the three dimensional projections K|(w⊥∩ζ⊥), L|(w⊥∩
ζ⊥) have no O(3) symmetries. Then K = L + b or K = −L + b for some
b ∈ R5.

We state a generalization of Theorem 1 to n dimensions as a Corollary.

Corollary 1. Let K and L be two convex bodies in Rn having countably
many diameters. Assume that there exists a diameter dK(ζ), such that the
projections K|H, L|H onto all four dimensional subspaces H containing ζ
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Figure 1. Diameter dK(ζ) and side projection K|w⊥.

are directly congruent. Assume also that these projections have no SO(4)
symmetries, and that the three dimensional projections K|(H ∩ ζ⊥) and
L|(H ∩ ζ⊥) have no O(3) symmetries. Then K = L+ b or K = −L+ b for
some b ∈ Rn.

1.2. Results about directly congruent sections. We also obtain results
related to Problem 2.

Theorem 2. Let K and L be two star bodies in R5 having countably many
diameters. Assume that there exists a diameter dK(ζ), containing the origin,
such that the side sections K ∩ w⊥, L ∩ w⊥ by all subspaces w⊥ containing
ζ are directly congruent. Assume also that these sections have no SO(4)
symmetries, and that the three dimensional sections K ∩ (w⊥ ∩ ζ⊥), L ∩
(w⊥ ∩ ζ⊥) have no O(3) symmetries. Then K = L + b or K = −L + b for
some b ∈ R5 parallel to ζ.

The n dimensional generalization of Theorem 2 is stated as a Corollary.

Corollary 2. Let K and L be two star bodies in Rn having countably many
diameters. Assume that there exists a diameter dK(ζ), containing the origin,
such that the sections K ∩ H, L ∩ H by all four dimensional subspaces H
containing ζ are directly congruent. Assume also that these sections have
no SO(4) symmetries, and that the three dimensional sections K ∩H ∩ ζ⊥,
L ∩H ∩ ζ⊥ have no O(3) symmetries. Then K = L+ b or K = −L+ b for
some b ∈ Rn parallel to ζ.

The paper is organized as follows. In Section 2, we introduce the needed
definitions and notation. In Section 3, we prove the main auxiliary result
of the paper, a functional equation similar to Proposition 1 in [ACR]. In
Section 4 we prove Theorem 1 and Corollary 1, and in Section 5 we prove
Theorem 2 and Corollary 2.
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2. Notation and auxiliary definitions

We will use the following standard notation. The unit sphere in Rn,
n ≥ 2, is Sn−1. Given w ∈ Sn−1, the hyperplane orthogonal to w and
passing through the origin will be denoted by w⊥ = {x ∈ Rn : x · w = 0},
where x · w = x1w1 + · · · + xnwn is the usual inner product in Rn. The
Grassmann manifold of all k dimensional subspaces in Rn will be denoted
by G(n, k). The notation O(k) and SO(k), 2 ≤ k ≤ n, for the subgroups of
the orthogonal group O(n) and the special orthogonal group SO(n) in Rn
is standard. If U ∈ O(n) is an orthogonal matrix, we will write U t for its
transpose.

We refer to [Ga, Chapter 1] for the next definitions involving convex and
star bodies. A body in Rn is a compact set which is equal to the closure of
its non-empty interior. A convex body is a body K such that for every pair
of points in K, the segment joining them is contained in K. For x ∈ Rn, the
support function of a convex body K is defined as hK(x) = max{x · y : y ∈
K} (see page 16 in [Ga]). The width function ωK(x) of K in the direction
x ∈ Sn−1 is defined as ωK(x) = hK(x) + hK(−x). A segment [z, y] ⊂ K
is called a diameter of the convex body K if |z − y| = max

{θ∈Sn−1}
ωK(θ). We

say that a convex body K ⊂ Rn has countably many diameters if the width
function ωK reaches its maximum on a countable subset of Sn−1.

Observe that a convex body K has at most one diameter parallel to a
given direction ζ ∈ Sn−1 (for, if K had two parallel diameters d1, d2, then
K would contain a parallelogram with sides d1 and d2, one of whose diagonals
is longer than d1). For this reason, if K has a diameter parallel to ζ ∈ Sn−1,
we will denote it by dK(ζ).

A set S ⊂ Rn is said to be star-shaped with respect to a point p if the line
segment from p to any point in S is contained in S. For x ∈ Rn \ {0}, and
K ⊂ Rn a nonempty, compact, star-shaped set with respect to the origin,
the radial function of K is defined as ρK(x) = max{c : cx ∈ K}. Here, the
line through x and the origin is assumed to meet K ([Ga, page 18]). We say
that a body K is a star body if it K is star-shaped with respect to the origin
and its radial function ρK is continuous.

Given a star body K, a segment [z, y] ⊂ K is called a diameter of K
if |z − y| = max

{[a,b]⊂K}
|a − b|. If a non-convex star body K has a diameter

containing the origin that is parallel to ζ ∈ Sn−1, we will also denote it by
dK(ζ).

Given ζ ∈ Sn−1, the great (n− 2) dimensional sub-sphere of Sn−1 that is
perpendicular to ζ will be denoted by Sn−2(ζ) = {θ ∈ Sn−1 : θ · ζ = 0}. For
t ∈ [−1, 1], the parallel to Sn−2(ζ) at height t will be denoted by Sn−2t (ζ) =
Sn−1 ∩ {x ∈ Rn : x · ζ = t}. Observe that when t = 0, Sn−20 (ζ) = Sn−2(ζ).
Figure 2 shows the case n = 5.
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Figure 2. The great subsphere S3(ζ) and the parallel S3
t (ζ).

For w ∈ S4, we will denote by O(4, S3(w)), SO(4, S3(w)), the orthogonal
transformations in the 4 dimensional subspace spanned by the great sub-
sphere S3(w) of S4. The restriction of a transformation ϕ ∈ O(n) onto the
subspace of smallest dimension containing W ⊂ Sn−1 will be denoted by
ϕ|W . I stands for the identity transformation.

Finally, we define the notion of symmetry for functions, as it will be used
throughout the paper.

Definition 1. Let f be a continuous function on Sn−1 and let ξ ∈ Sn−1.
We say that the restriction of f onto Sk−1(ξ) (or just f) has an SO(k)
symmetry if for some non-identical rotation ϕξ ∈ SO(k, Sk−1(ξ)), we have
f ◦ ϕξ = f on S3(ξ). We similarly define the property that f has an O(k)
symmetry.

3. A result about a functional equation on S4

Proposition 1. Let f and g be two continuous functions on S4. Assume
that for some ζ ∈ S4 and for every w ∈ S3(ζ) there exists a rotation ϕw ∈
SO(4, S3(w)), verifying that

(1) f ◦ ϕw(θ) = g(θ), ∀θ ∈ S3(w).

Assume, in addition, that ϕw(ζ) = ±ζ ∀w ∈ S3(ζ), that the restrictions of
f and g to each S3(w) have no SO(4) symmetries, and that the restrictions
of f and g to each S3(w) ∩ S3(ζ) have no O(3) symmetries.

Then either f = g on S4 or f(θ) = g(−θ) ∀θ ∈ S4.

3.1. Auxiliary Lemmata. We will divide the proof of Proposition 1 in
several lemmata. The first Lemma describes the structure of the rotations
ϕw that satisfy the the condition ϕw(ζ) = ±ζ.

Lemma 1. Let ϕ ∈ SO(4) and let ζ ∈ R4, ζ 6= 0. If ϕ(ζ) = ±ζ, then either
ϕ = ±I, or ζ belongs to one of the invariant 2 dimensional subspaces of ϕ,
and the restriction of ϕ onto that subspace is a trivial rotation or a rotation
by π.
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Proof. If ϕ = ±I, the result is clear. Let ϕ 6= ±I, and let Π and Π⊥ be
the two 2 dimensional invariant subspaces of ϕ. We can assume that the
matrix of ϕ is written in the basis of pairwise orthogonal unit vectors ej ∈ Π,

j = 1, 2, and ej ∈ Π⊥, j = 3, 4. Then, for some α ∈ [0, 2) and β ∈ [0, 2), our
condition

cos(απ) − sin(απ) 0 0
sin(απ) cos(απ) 0 0

0 0 cos(βπ) − sin(βπ)
0 0 sin(βπ) cos(βπ)



ζ1
ζ2
ζ3
ζ4

 = ±


ζ1
ζ2
ζ3
ζ4


yields [

cos(απ) − sin(απ)
sin(απ) cos(απ)

] [
ζ1
ζ2

]
= ±

[
ζ1
ζ2

]
∈ Π

and [
cos(βπ) − sin(βπ)
sin(βπ) cos(βπ)

] [
ζ3
ζ4

]
= ±

[
ζ3
ζ4

]
∈ Π⊥.

If both vectors (ζ1, ζ2) and (ζ3, ζ4) are non-trivial, then α = 0, 1 and β = 0, 1,
from which the result follows. On the other hand, if (ζ1, ζ2) is trivial, then
α is arbitrary, β = 0, 1 and ζ ∈ Π⊥. Similarly, if (ζ3, ζ4) is trivial, then β is
arbitrary and α = 0, 1 and ζ ∈ Π. �

The next Lemma is an observation about the geometry of the sphere.

Lemma 2. Let ζ and x be in Sk, k ≥ 3. Then,⋃
{w∈Sk−1(ζ)∩Sk−1(x)}

Sk−1(w) = Sk.

Proof. Let y be any point on Sk. Then Sk−1(ζ) ∩ Sk−1(x) ∩ Sk−1(y) is
nonempty, since k ≥ 3. Taking any w ∈ Sk−1(ζ) ∩ Sk−1(x) ∩ Sk−1(y) ⊂
Sk−1(ζ) ∩ Sk−1(x), it follows that y ∈ Sk−1(w). �

Lemma 3. (cf. Lemma 1, [R]). Let ζ ∈ Sk, k ≥ 4. If for every w ∈ Sk−1(ζ)
we have either f(θ) = g(θ) for all θ ∈ Sk−1(w) or f(−θ) = g(θ) for all
θ ∈ Sk−1(w), then either f = g on Sk or f(−θ) = g(θ) for all θ ∈ Sk.

Proof. Assume at first that there exists an x ∈ Sk such that for all w ∈
Sk−1(ζ)∩Sk−1(x) we have f(θ) = g(θ) for all θ ∈ Sk−1(w). Then, using the
previous lemma, we obtain f = g on Sk.

Assume now that there exists an x ∈ Sk such that for all w ∈ Sk−1(ζ) ∩
Sk−1(x) we have f(−θ) = g(θ) for all θ ∈ Sk−1(w). Then, using the previous
lemma, we obtain f(−θ) = g(θ) for all θ ∈ Sk.

Finally, assume that for every x ∈ Sk there exist two directions w1 and
w2 in Sk−1(ζ) ∩ Sk−1(x) such that f(θ) = g(θ) for all θ ∈ Sk−1(w1) and
f(−θ) = g(θ) for all θ ∈ Sk−1(w2). Then f(−x) = f(x) = g(x), and since x
was chosen arbitrarily, we obtain f = g on Sk. �
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For the next result, let O ∈ SO(5) be the orthogonal transformation
defined by O(ζ) = ζ and O|S3(ζ) = −I. Observe that O|S3(w) commutes with

every rotation ϕw ∈ SO(4, S3(w)), such that ϕw(ζ) = ±ζ, where w ∈ S3(ζ).
A function f defined on S4 can be decomposed in the form

(2) f(θ) =
f(θ) + f(Oθ)

2
+
f(θ)− f(Oθ)

2
= fO,e(θ) + fO,o(θ), θ ∈ S4,

and we will call fO,e, fO,o, the even and odd parts of f with respect to O.
Since O2 = I, we have

fO,e(θ) = fO,e(Oθ), fO,o(θ) = −fO,o(Oθ).

Given y ∈ S4, we have that y ∈ S3
t (ζ) for some t ∈ [−1, 1], i.e. we can

write

(3) y =
√

1− t2x+ tζ,

for some t ∈ [−1, 1] and x ∈ S3(ζ) (see Figure 2). For any function f on S4,
we define the function Ft on S3(ζ),

(4) Ft(x) = Ft,ζ(x) = f(
√

1− t2x+ tζ), x ∈ S3(ζ),

which is the restriction of f to S3
t (ζ). Observe that the even part of Ft,

(Ft)e equals

(Ft)e(x) =
f(
√

1− t2x+ tζ) + f(−
√

1− t2x+ tζ)

2
=
f(y) + f(Oy)

2
,

where y is as in (3), i.e.,

(5) (Ft)e(x) = fO,e(y), (Ft)o(x) = fO,o(y).

Note that (Ft)e(x) = (Ft)e(−x) for every x ∈ S3(ζ). We similarly define Gt
from the function g.

Every two dimensional great circle of S3(ζ) is of the form Ew := S3(w)∩
S3(ζ) for some w ∈ S3(ζ). Since ϕw(ζ) = ±ζ and ϕw(S3(w)) = S3(w), we
have

ϕw(Ew) = ϕw(S3(w) ∩ S3(ζ)) = S3(w) ∩ S3(ζ) = Ew.

For ϕw ∈ SO(4, S3(w)) as in Proposition 1, we let φEw = ϕw|Ew be the
restriction of ϕw to Ew. Thus, for every t ∈ [−1, 1], we have

(6) Ft ◦ φEw(x) = Gt(x) ∀x ∈ Ew,

Lemma 4. Assume that f, g satisfy equation (1) for all w ∈ S3(ζ). Then
fO,e(y) = gO,e(y) for every y ∈ S4.

Proof. For w ∈ S3(ζ), we consider the spherical Radon transform

Rf(w) =

∫
Ew

f(x)dx
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(see [Ga, pg. 429]). Since Lebesgue measure is invariant under orthogonal
transformations on Ew, by (6) we have∫

Ew

Ft(x)dx =

∫
Ew

Ft(ϕw(x))dx =

∫
Ew

Gt(x)dx,

for each t ∈ [−1, 1]. Hence, RFt(w) = RGt(w) for every w ∈ S3(ζ) and
t ∈ [−1, 1], and it follows from Theorem C.2.4 from [Ga, pg. 430] that the
even parts of Ft and Gt coincide. By equations (4) and (5), this means that
fO,e(y) = gO,e(y) for every y ∈ S4.

�

Note: Because of Lemma 4, from now on we will assume that f, g are
odd with respect to O.

Given w ∈ S3(ζ) and ϕw 6= ±I verifying the hypotheses of Proposition 1,
we have by Lemma 1 that w⊥ = Πw⊕Π⊥w , where ζ ∈ Π⊥w , ϕw|Π⊥w = ±I, and
ϕw|Πw is a 2 dimensional rotation. On R5 we consider a positively oriented
orthonormal basis {u, v, ζ, z, w}, so that {u, v} is a basis of Πw, and {ζ, z}
is a basis of Π⊥w . When we consider ϕw we mean that it is the restriction
to the 4 dimensional subspace spanned by S3(w) of a rotation Φ ∈ SO(5)
with the following properties: Φ(w) = w, Φ|Π⊥w = ±I, and Φ|Πw is a 2
dimensional rotation. Given t ∈ Πw ∩ S4, if the angle between the vectors
t and ϕw(t) ∈ Πw ∩ S4 is απ, for α ∈ (0, 2), α 6= 1, and {t, ϕw(t), ζ, z, w}
forms a positively oriented basis of R5, then we will denote ϕw|Πw by ϕαπw
when we want to specify the angle of rotation.

We define the sets

Ξ+ =
{
w ∈ S3(ζ) : f(θ) = g(θ) ∀θ ∈ S3(w)

}
,

Ξ− =
{
w ∈ S3(ζ) : f(θ) = g(−θ) ∀θ ∈ S3(w)

}
,

Ξ0 =
{
w ∈ S3(ζ) : f |Πw = g|Πw, and f(θ) = g(−θ) ∀θ ∈ Π⊥w

}
,

Ξ1 =
{
w ∈ S3(ζ) : f |Π⊥w = g|Π⊥w , and f(θ) = g(−θ) ∀θ ∈ Πw

}
,

and, for α ∈ (0, 1) ∪ (1, 2),

(7) Ξα =
{
w ∈ S3(ζ) : ϕw|Π⊥w = ±I, ϕw|Πw = ϕαπw

and f ◦ ϕw(θ) = g(θ), ∀θ ∈ S3(w)
}
.

With this notation, the hypothesis of Proposition 1 is that

S3(ζ) = Ξ+ ∪ Ξ− ∪
⋃

α∈[0,2)

Ξα,

and we want to show that, under the condition on the lack of symmetries,
we have either S3(ζ) = Ξ+ or S3(ζ) = Ξ−. By Lemma 3, this will imply
that either f = g on S4 or f(θ) = g(−θ) for all θ ∈ S4.

Lemma 5. The sets Ξ+,Ξ−,Ξα are closed.
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Proof. Since the empty set is closed, we can assume that the sets Ξ+,Ξ−
and Ξα are not empty. First we prove that Ξ+ is closed. Let (wl)

∞
l=1 be a

sequence of elements of Ξ+ converging to w ∈ S3(ζ) as l → ∞, and let θ
be any point on S3(w). Consider a sequence (θl)

∞
l=1 of points θl ∈ S3(wl)

converging to θ as l → ∞. (To see why such a sequence exists, see [ACR,
Lemma 3]). By definition of Ξ+ we have the following,

f(θl) = g(θl), θl ∈ S3(wl), l ∈ N.
Since f and g are continuous, we may pass to the limit and obtain f(θ) =
g(θ). Thus w ∈ Ξ+ since the choice of θ ∈ S3(w) was arbitrary, and hence
Ξ+ is closed. A similar proof shows that Ξ− is closed, replacing g(θl) with
g(−θl) and g(θ) with g(−θ).

Now we prove that Ξα is closed, where α ∈ [0, 2). As above, let (wl)
∞
l=1

be a sequence of elements of Ξα converging to w ∈ S3(ζ) as l→∞, and let
θ be any point on S3(w). Consider a sequence (θl)

∞
l=1 of points θl ∈ S3(wl)

converging to θ as l → ∞. From the hypothesis of the proposition, for
each wl there exists the rotation ϕwl

. Let Φwl
be the rotation in R5 whose

restriction to w⊥l is ϕwl
. By compactness, the sequence {Φwl

} ⊆ SO(5) has
a convergent subsequence.

Suppose that (Φwl
)∞l=1 has two subsequences that converge to two dif-

ferent rotations in SO(5), (Φw1
j
) → Φw1 and (Φw2

k
) → Φw2 , where Φw1 6=

Φw2 . Since wl converges to w, and Φwl
(wl) = wl, we have that Φw1(w) =

w,Φw2(w) = w. Let ϕw1 be the restriction of Φw1 to the subspace w⊥,
and similarly ϕw2 = Φw2 |w⊥. We know that f ◦ ϕw1

j
(θj) = g(θj) and by

passing to the limit we obtain that f ◦ ϕw1(θ) = g(θ). Similarly, we have
f ◦ ϕw2(θ) = g(θ). This implies that f ◦ ϕw1(θ) = f ◦ ϕw2(θ). Since the
choice of θ was arbitrary, this last equation holds for all θ ∈ S3(w). Thus,
f ◦ ϕw1 ◦ ϕ−1

w2 (θ) = f(θ) for all θ ∈ S3(w), where ϕw1 ◦ ϕ−1
w2 6= I since

ϕw1 6= ϕw2 . Thus, f has a SO(4) symmetry on S3(w), which is a con-
tradiction. Therefore, all convergent subsequences of {Φwj} must have the
same limit, which we will denote by Φw. It follows that the restrictions ϕwl

converge to ϕw = Φw|w⊥.
For each ϕwl

there is a unique pair of invariant two dimensional planes,
namely Πwl

and Π⊥wl
, with ϕwl

|Π⊥wl
= ±I and ϕwl

|Πwl
= ϕαπwl

, since wl ∈
Ξα. Also, ϕw has a unique pair of invariant subspaces Πw and Π⊥w , and
therefore (Πwl

)→ Πw and (Π⊥wl
)→ Π⊥w . Thus, there is either a subsequence

ϕw1
j
|Π⊥

w1
j

= I (which would imply ϕw|Π⊥w = I), or a subsequence ϕw1
j
|Π⊥

w1
j

=

−I (which implies that ϕw|Π⊥w = −I). Furthermore, since ϕwl
|Πwl

are
rotations by the same angle απ, for the limit we obtain that ϕw|Πw is also
a rotation by the same angle, and since

(8) f ◦ ϕαπwl
(θl) = g(θl) θl ∈ Πwl

, l ∈ N,
we conclude by continuity that f ◦ ϕw(θ) = g(θ). This shows that Ξα is
closed.
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�

The next Lemma shows that rotations by an irrational multiple of π do
not occur because of the lack of symmetries of f and g.

Lemma 6. Under the hypotheses of Proposition 1, we have Ξα = ∅ for
α ∈ (R \Q) ∩ [0, 2).

Proof. Let α ∈ (R \Q) ∩ [0, 2), and take w ∈ Ξα. Following the ideas of
Schneider [Sch1], we claim at first that f2 = g2 on S3(w). Indeed, since f
and g are odd with respect to O, f2 and g2 are even with respect to O, and
(1) holds with f2, g2 instead of f , g. Thus, by Lemma 4, we obtain that
f2 = g2 on S3(w).

Squaring (1), we have

f2 ◦ ϕw(θ) = g2(θ) = f2(θ) ∀θ ∈ S3(w).

Iterating, for any k ∈ Z,

(9) f2 ◦ ϕkw(θ) = f2 ◦ ϕk−1w (θ) = · · · = f2(θ) ∀θ ∈ S3(w).

Let {ζ, z} be an orthonormal basis for Π⊥w , and consider the three dimen-
sional subspace generated by Πw and z, and its unit sphere S3(w)∩S3(ζ). If
ϕw|Π⊥w = I, then ϕw|S3(w)∩S3(ζ) is a rotation of angle απ around the vec-
tor z. For each θ ∈ S3(w)∩S3(ζ), equation (9) holds for any k ∈ Z, and since
the orbit of (ϕkw(θ))k∈Z is dense, we conclude that f2 and g2 are constant
on each parallel of S3(w)∩S3(ζ) perpendicular to z. By continuity, f and g
must also be constant on each parallel, and thus f ◦ ϕw(θ) = f(θ) for every
θ ∈ S3(w) ∩ S3(ζ). But then f has an SO(3) symmetry on S3(w) ∩ S3(ζ),
contradicting the hypothesis of Proposition 1.

On the other hand, if ϕw(ζ) = −ζ, then ϕ2
w|S3(w) ∩ S3(ζ) is a rotation

around z by the angle 2απ, and similarly to the previous case, f must
be constant on every parallel of S3(w) ∩ S3(ζ), and thus has a rotational
symmetry on S3(w) ∩ S3(ζ). This is a contradiction, and thus we have
proven that Ξα = ∅ for irrational α. �

Proof of Proposition 1. By Lemma 6, the sphere S3(ζ) is equal to a
countable union of closed sets,

(10) S3(ζ) = Ξ+ ∪ Ξ− ∪
⋃

α∈[0,2)∩Q

Ξα.

We observe that the sets on the right hand side of (10) are disjoint. Indeed,
assume that there exists z ∈ Ξα ∩ Ξβ, where α and β are either +,− or
a rational number in [0, 2), and α 6= β. Then, there are two rotations
ϕz,α, ϕz,β ∈ SO(4, S3(z)) such that f ◦ϕz,α(θ) = g(θ) and f ◦ϕz,β(θ) = g(θ)
for all θ ∈ S3(z). But then f ◦ϕz,β(θ) ◦ (ϕz,α)−1(θ) = f(θ) for all θ ∈ S3(z),
where ϕz,β(θ)◦(ϕz,α)−1 is not the identity since α 6= β. Thus, if Ξα∩Ξβ 6= ∅,
f has a symmetry on S3(z), contradicting the hypothesis of Proposition 1.
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Thus, in (10) we have written S3(ζ) as a countable union of disjoint closed
sets. By a well-known result of Sierpiński’s [Si], S3(ζ) must equal just one
of the sets. We will now assume that S3(ζ) = Ξα for some α ∈ [0, 2) ∩ Q,
and derive a contradiction. This will leave us only with the possibilities
S3(ζ) = Ξ+ or S3(ζ) = Ξ−, and Proposition 1 will be proven.

Let S3(ζ) = Ξα. Choose w ∈ S3(ζ) and ξ ∈ S3(w) ∩ S3(ζ). By Lemma
1, the subspace ξ⊥ is equal to Πξ ⊕Π⊥ξ , with ζ ∈ Π⊥ξ . Let zξ ∈ Π⊥ξ be such

that {ζ, zξ} is an orthonormal basis of Π⊥ξ .

We will write the set S3(w)∩S3(ζ) as the union of two closed sets, Θgood

and Θbad, where

Θgood = {ξ ∈ S3(w) ∩ S3(ζ) : Πξ = ξ⊥ ∩ w⊥ ∩ ζ⊥},

Θbad = {ξ ∈ S3(w)∩S3(ζ) : dim(Πξ ∩w⊥∩ ζ⊥) = dim(Π⊥ξ ∩w⊥∩ ζ⊥) = 1}.
Observe that Θgood and Θbad are closed (this can be shown by an argument
similar to the one in the proof of Lemma 5). They are also disjoint sets whose
union equals S3(w)∩ S3(ζ). It follows that either S3(w)∩ S3(ζ) = Θgood or
S3(w) ∩ S3(ζ) = Θbad.

Assume that S3(w)∩ S3(ζ) = Θbad. We claim that, in this case, the map

ξ → `(ξ) = Π⊥ξ ∩ w⊥ ∩ ζ⊥

defines a non-vanishing continuous tangent line field on the two dimensional
sphere S3(w) ∩ S3(ζ). If this map were not continuous, then there would
exist two subsequences {ξ1j } and {ξ2j }, both with limit ξ0, such that

lim
j→∞

`(ξ1j ) 6= lim
j→∞

`(ξ2j ).

Denote by z10 a unit vector in the direction of the line limj→∞ `(ξ
1
j ) and by z20

a unit vector in the direction of the line limj→∞ `(ξ
2
j ). We have z10 6= ±z20 .

Let ϕiξ0 = lim
j→∞

ϕξij
, for i = 1, 2, and let Πi

0 ⊕ (Πi
0)
⊥ the corresponding

decompositions of ξ⊥0 . Since all the rotations ϕξij
|Πξij

are by the angle απ,

the limiting rotations ϕ1
ξ0
|Πξ10

and ϕ2
ξ0
|Πξ20

are by the angle απ as well (this

can be shown by a reasoning similar to the one in the proof of Lemma
5). But given that z10 6= ±z20 , the subspaces (Πξ1j

)⊥ and (Πξ2j
)⊥ must be

different. This means that ϕ1
ξ0

and ϕ2
ξ0

are two different rotations on ξ⊥0 .

From equation (1), it follows that f ◦ ϕ1
ξ0
◦ (ϕ2

ξ0
)−1 = f on S3(ξ0), where

ϕ1
ξ0
◦ (ϕ2

ξ0
)−1 6= I. Therefore, we conclude that f has a rotational symmetry

on ξ⊥0 . Thus, the line field spanned by yξ must be continuous on the two
dimensional sphere S3(w)∩S3(ζ). This is impossible by a well known result
of Hopf (see [Mi]).

We now consider the case in which S3(w) ∩ S3(ζ) = Θgood, i.e. the two

dimensional space Πξ is equal to ξ⊥ ∩ w⊥ ∩ ζ⊥, and the restriction of ϕξ to
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this subspace, which we will denote by ψξ, is a rotation by the angle απ.
We have that the restrictions of f and g to S3(w) ∩ S3(ζ) satisfy

(11) f ◦ ψξ(θ) = g(θ), ∀θ ∈ Πξ,

for every ξ ∈ S3(w) ∩ S3(ζ). But every one dimensional great circle on the
two dimensional sphere S3(w) ∩ S3(ζ) is of the form S3(ξ) ∩ S3(w) ∩ S3(ζ)
for some ξ ∈ S3(w) ∩ S3(ζ). We are thus under the hypothesis of the
continuous Rubik’s cube [R], and therefore we can conclude that either f = g
on S3(w) ∩ S3(ζ), or f(θ) = g(−θ) for every θ ∈ S3(w) ∩ S3(ζ).

Therefore, we have

f ◦ ϕw(θ) = g(θ) and f(θ) = g(θ) ∀θ ∈ S3(w) ∩ S3(ζ),

or

f ◦ ϕw(θ) = g(θ) and f(θ) = g(−θ) ∀θ ∈ S3(w) ∩ S3(ζ).

This implies that either

f ◦ ϕw(θ) = f(θ) ∀θ ∈ S3(w) ∩ S3(ζ)

or

f ◦ ϕw(θ) = f(−θ) ∀θ ∈ S3(w) ∩ S3(ζ),

where the restriction of ϕw to S3(w) ∩ S3(ζ) is not the identity, since we
are assuming that w ∈ S3(ζ) = Ξα. Thus, the restriction of f to the 3
dimensional subspace spanned by S3(w) ∩ S3(ζ) has an O(3) symmetry,
contradicting the hypothesis of Proposition 1.

Since the case S3(ζ) = Ξα leads to a contradiction, we conclude that
either S3(ζ) = Ξ+, or S3(ζ) = Ξ−. Proposition 1 is proven.

�

4. Proof of Theorems 1 and 2

As in [ACR], the key ingredient in the proof of Theorem 1 is the existence
of a diameter dK(ζ) such that the side projections of K and L are directly
congruent. We will first show that this implies that L must also have a
diameter in the ζ direction, which necessarily has the same length as dK(ζ).
We can thus translate the bodies K and L so that their diameters dK(ζ)
and dL(ζ) coincide and are centered around the origin. Since the translated

bodies, K̃ and L̃, have countably many diameters, almost all side projections
contain only this particular diameter, which must be fixed by the rotation.
Therefore, we have reduced Theorem 1 to Proposition 1 with f = hK̃ and
g = hL̃.

4.1. Theorem 1 and Corollary 1. Let ζ ∈ S4 be the direction of the
diameter dK(ζ) given in Theorem 1. By hypothesis, for every w ∈ S3(ζ),
the projections K|w⊥ and L|w⊥ are directly congruent. Hence, for every
w ∈ S3(ζ) there exists χw ∈ SO(4, S3(w)) and aw ∈ w⊥ such that

(12) χw(K|w⊥) = L|w⊥ + aw.
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Let AK ⊂ S4 be the set of directions parallel to the diameters of K, and
AL ⊂ S4 be the set of directions parallel to the diameters of L. We define

(13) Ω = {w ∈ S3(ζ) : (AK ∪ AL) ∩ S3(w) = {±ζ}}.
The following two Lemmata are proven by the same arguments used in

[ACR]. Lemma 7 shows that for most of the directions w ∈ S3(ζ) the
projections K|w⊥ and L|w⊥ have exactly one diameter, dK(ζ) and dL(ζ),
respectively. We can thus translate the bodies K and L by vectors aK ,
aL ∈ R5, to obtain K̃ = K + aK and L̃ = L+ aL such that their diameters
dK̃(ζ) and dL̃(ζ) coincide and are centered at the origin.

Lemma 7. (cf. [ACR, Lemma 13].) Let K and L be as in Theorem 1, and
let ζ ∈ AK . Then ζ ∈ AL, and Ω is everywhere dense in S3(ζ). Moreover,
for every w ∈ Ω we have χw(ζ) = ±ζ and ωK(ζ) = ωL(ζ).

Lemma 8. (cf. [ACR, Lemma 14].) Let χw be the rotation given by (12),

and let w ∈ Ω. Then the rotation ϕw := (χw)t satisfies ϕw(ζ) = ±ζ and

(14) hK̃ ◦ ϕw(θ) = hL̃(θ) ∀θ ∈ S3(w).

Proof of Theorem 1. Consider the closed sets Ξ = {w ∈ S3(ζ) :
(14) holds with ϕw(ζ) = ζ} and Ψ = {w ∈ S3(ζ) : (14) holds with ϕw(ζ) =
−ζ}. Since the set Ω ⊂ (Ξ ∪ Ψ) is everywhere dense in S3(ζ) by Lemma
7, we have that Ξ ∪ Ψ = S3(ζ). We have thus reduced matters to Propo-
sition 1 with f = hK̃ and g = hL̃. Therefore, either hK̃ = hL̃ on S4 or

hK̃(θ) = hL̃(−θ) for every θ ∈ S4. This means that either K + aK = L+ aL
or K + aK = −L− aL. �

Proof of Corollary 1. First, we translate K and L by vectors aK , aL ∈ Rn,
obtaining the bodies K̃ = K + aK and L̃ = L + aL, so that the diameters
dK̃(ζ) and dL̃(ζ) are centered at the origin. Next, we observe that for any

five dimensional subspace J of Rn, containing ζ, the bodies K̃|J and L̃|J
verify the hypotheses of Theorem 1. Therefore, K̃|J = ±L̃|J .

Assume that there exist two five dimensional subspaces J1 and J2, such
that K̃|J1 = L̃|J1 and K̃|J2 = −L̃|J2. If J1 ∩ J2 has dimension four, then

L̃|(J1 ∩ J2) = (L̃|J1)|(J1 ∩ J2) = (K̃|J1)|(J1 ∩ J2) = (K̃|J2)|(J1 ∩ J2)

(15) = (−L̃|J2)|(J1 ∩ J2) = −L̃|(J1 ∩ J2).
Since −I ∈ SO(4), equation (15) implies that the projection L̃|(J1∩J2) has
an SO(4) symmetry, contradicting the assumptions of the corollary. The
same argument shows that if J1 ∩ J2 is three dimensional, the projection
L̃|(J1 ∩ J2) has an O(3) symmetry (since −I ∈ O(3)). Next, assume that
J1 ∩ J2 is two dimensional, and let {ζ, v1, v2, v3, v4} and {ζ, v1, v′2, v′3, v′4} be
orthonormal bases for J1 and J2, respectively. Consider the subspace J0
spanned by {ζ, v1, v2, v′2}. Then, both J1 ∩ J0 and J2 ∩ J0 have dimension
three, and the above argument can be used again. The case where J1 ∩ J2
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is one dimensional can be dealt with in a similar way. We conclude that
either K̃|J = L̃|J for every five dimensional subspace J containing ζ, or

K̃|J = −L̃|J for all such J . By Theorem 3.1.1 from [Ga, page 99], it follows

that K̃ = L̃ or K̃ = −L̃. Thus, K = L+aL−aK or K = −L−aL−aK . �

5. Proofs of Theorem 2 and Corollary 2.

We are now considering star-shaped bodies with respect to the origin. Let
ζ ∈ S4 be the direction given in Theorem 2. The hypotheses imply that for
every w ∈ S3(ζ) there exists χw ∈ SO(4, S3(w)) and aw ∈ w⊥ such that

(16) χw(K ∩ w⊥) = (L ∩ w⊥) + aw.

Let l(ζ) denote the one dimensional subspace containing ζ. As in Section
3, we let AK ⊂ S4 be the set of directions that are parallel to the diameters
of K (similarly for L). Note that it is possible for star-shaped bodies to
contain several parallel diameters. We consider the set Ω, defined as in (13),
and the set Ωr, defined by

(17) Ωr = {w ∈ Ω : K ∩ w⊥ and L ∩ w⊥ have only one diameter}.

Then it follows from the hypothesis of Theorem 2 that if w ∈ Ωr, then
dK(ζ) must be the unique diameter of K ∩ w⊥. We will use the notation
vK(ζ) = ρK(ζ) + ρK(−ζ) for the length of the diameter dK(ζ). As in the
previous Section, it can be shown that for most directions w ∈ S3(ζ), the
sections K ∩ w⊥, L ∩ w⊥ contain exactly one diameter parallel to ζ and
passing through the origin.

Lemma 9. (cf. [ACR, Lemma 15].) Let K and L be as in Theorem 2. Then
L has a diameter dL(ζ) passing through the origin, and Ωr is everywhere
dense in S3(ζ). Moreover, for every w ∈ Ωr we have χw(ζ) = ±ζ and
vK(ζ) = vL(ζ).

We now wish to argue as in the proof of Theorem 1 and translate the
body L so that its diameter dL(ζ), given by Lemma 9 coincides with dK(ζ).
However, the translate of a star-shaped body with respect to the origin may
no longer be a star-shaped body with respect to the origin. The next Lemma,
which is similar to Lemma 16 in [ACR] shows that, under our hypotheses,
the translated body is still star-shaped (this Lemma is not necessary if K
and L are convex). We include the proof here, since the rotation χw is now
in SO(4, S3(w)), and the argument is slightly different.

Lemma 10. There exists a vector a ∈ R5, parallel to ζ, such that the body
L̃ = L+ a is star-shaped with respect to the origin, and dK(ζ) = dL̃(ζ).

Proof. Consider the sets

R1 = {w ∈ Ωr : χw(dK(ζ)) = dK(ζ)},
R2 = {w ∈ Ωr : χw(dK(ζ)) 6= dK(ζ)},
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where χw is the rotation in SO(4, S3(w)) as in (16). By Lemma 1, since
χw(ζ) = ±ζ, we have that either χw = ±I, or that χw has an invariant two
dimensional subspace Π⊥, containing ζ, such that χw|Π⊥ = ±I. If χw = I
or χw|Π⊥ = I, or if dK(ζ) is centered at the origin, then w ∈ R1. The only
case in which w ∈ R2 is if dK(ζ) is not centered at the origin, and either
χw = −I or χw|Π⊥ = −I.

Assume, at first, that Ωr = R1. Since the diameter dK(ζ) is fixed by
χw, and dL(ζ) contains the origin, it follows that the vector aw in (16) is
independent of w ∈ Ωr and aw = a1 = (ρK(ζ)− ρL(ζ)) ζ. The translated
section (L∩w⊥)+a1 coincides with χw(K∩w⊥), and therefore (L∩w⊥)+a1
is star-shaped with respect to the origin for every w ∈ Ωr. Since Ωr is dense
in S3(ζ), we conclude that the translated body L̃ = L + a, with a = a1, is
also star-shaped with respect to the origin.

Secondly, assume that Ωr = R2. Then, aw is independent of w ∈ Ωr and
aw = a2 = (ρK(−ζ)− ρL(ζ)) ζ. We conclude that L̃ = L + a, with a = a2,
is star-shaped with respect to the origin.

Finally, we show that the case where R1 and R2 are both nonempty does
not occur under the assumptions of Theorem 2. Since R1 ∪ R2 = Ωr, we
have S3(ζ) = R1 ∪R2 ⊆ R1∪R2 ⊆ S3(ζ). Hence, there exists w0 ∈ R1∩R2,
i.e., there is a rotation χw0 such that χw0(dK(ζ)) = dK(ζ) and

(18) χw0(K ∩ w⊥0 ) = L ∩ w⊥0 + a1,

and a rotation χ̃w0 such that χ̃w0(dK(ζ)) 6= dK(ζ) and

(19) χ̃w0(K ∩ w⊥0 ) = L ∩ w⊥0 + a2.

In particular, since χ̃w0 does not fix dK(ζ), this diameter cannot be centered
at the origin, and it follows that the other rotation χw0 must be the identity,
at least on a two dimensional subspace containing ζ. By (18) and (19) we
have

K ∩ w⊥0 = χ−1w0

(
χ̃w0(K ∩ w⊥0 )

)
+ b,

where b ∈ R5. Observe that the rotation χ−1w0
◦ χ̃w0 is not the identity, since

χ−1w0
◦ χ̃w0(ζ) = −ζ. Therefore, K ∩ w⊥0 has a rotational symmetry. This

contradicts the hypothesis of Theorem 2. The Lemma is proven. �

In order to finish the argument, we need one further Lemma.

Lemma 11. (cf. [ACR, Lemma 17].) For every w ∈ Ωr there exists ϕw =
χ−1w ∈ SO(4, S3(w)), ϕw(ζ) = ±ζ, such that

(20) ρK ◦ ϕw(θ) = ρL̃(θ) ∀θ ∈ S3(w).

Proof of Theorem 2. Consider the sets

Ξr = {w ∈ S3(ζ) : (20) holds with ϕw(ζ) = ζ}
and

Ψr = {w ∈ S3(ζ) : (20) holds with ϕw(ζ) = −ζ}.
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By definition, Ωr ⊂ (Ξr∪Ψr). Therefore, Lemma 9 implies that Ξr∪Ψr =
S3(ζ). Now we can apply Proposition 1 (with f = ρK , g = ρL̃, and Ξ = Ξr,

Ψ = Ψr) obtaining that either ρK = ρL̃ on S4, or ρK(θ) = ρL̃(−θ) for all

θ ∈ S4. In the first case, K = L̃, and in the second, K = −L̃. Thus, either
K = L+ a, or K = −L− a. This finishes the proof of Theorem 2. �

Proof of Corollary 2
The proof is similar to the one of Corollary 1. One has only to consider

the sections K∩J , L̃∩J , instead of the projections K|J , L̃|J , and Theorem
7.1.1 from [Ga, page 270], instead of Theorem 3.1.1 from [Ga, page 99]. �
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