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Abstract. In this paper we give necessary and sufficient conditions for a harmonic
vector and all its partial derivatives to belong to Hp(Rn+1

+ ) for all p > 0.

1. Introduction and statements of main results

In this article we study the following problem: what can we say about conjugate
harmonic functions in Rn+1

+ = Rn×(0,∞), provided we are given certain restrictions,
imposed on partial derivatives of a harmonic vector F ,

F = (U(x, y), V1(x, y), V2(x, y), ..., Vn(x, y)), (x, y) ∈ Rn+1
+ .

We refer the reader to the classical works [11], [3], [13], [15], [5], [2], [4], [16] for the
history and different results related to this problem and classes Sp(Rn+1

+ ), hp(Rn+1
+ ),

Hp(Rn+1
+ ), (all definitions are given in Section 2).

We give necessary and sufficient conditions for a harmonic vector and all its partial
derivatives up to the order k to belong to Hp(Rn+1

+ ), p > 0. Our main result is

Theorem 1. Let 0 < p < q. The harmonic vector F = (U, V1, ..., Vn) and all its
partial derivatives of the order ≤ k belong to H r, p ≤ r ≤ q, if and only if

(1) 1) Mp(y + 1, F ) ≤ C, 2)

∫

Rn

(

sup
η≥y

|Dk
n+1U(x, η)|

)q

dx ≤ C.

The case p < (n − 1)/n leads to additional technical difficulties, since |F |p is
subharmonic, provided p ≥ (n − 1)/n, [13]. One of the methods of the proof is the
application of classes Sp(Rn+1

+ ) together with the Lagrange mean-value Theorem. We
also use the boundary behaviour of the conjugate harmonic functions. We note that
the first condition in (1) is natural not only due to the decomposition of the function
into two parts, “Sp(Rn+1

+ )” and “Hp(Rn+1
+ )” (see Section 3, Proof of Theorem 5). In

fact, it, together with the second condition, implies Mp(y + y0, F ) ≤ C(y0) ∀y0 > 0
(see Section 4, Lemma 7).

The paper is organized as follows. In section 2 we give all necessary definitions
and auxiliary results used in the sequel. Section 3 is devoted to the results needed
for the proof of Theorem 1, and in section 4 we prove Theorem 1. For convenience
of the reader we split our proofs into elementary Lemmata.

1991 Mathematics Subject Classification. Primary 30E25, secondary 42B25.
Key words and phrases. Hardy spaces, subharmonic functions.

1



2 ANATOLY RYABOGIN AND DMITRY RYABOGIN

2. Auxiliary results

We begin with the definition of classes Sp(Rn+1
+ ) and hp(Rn+1

+ ).
Let U(x, y) be a harmonic function in Rn+1

+ ≡ Rn × (0,∞). We say that the
vector-function V (x, y) = (V1(x, y), ..., Vn(x, y)) is the conjugate of U(x, y) in the
sense of M. Riesz [12], [14], if Vk(x, y), k = 1, ..., n are harmonic functions, satisfying
the generalized Cauchy-Riemann conditions:

∂U

∂y
+

n
∑

k=1

∂Vk

∂xk

= 0,
∂Vi

∂xk

=
∂Vk

∂xi

,
∂U

∂xi

=
∂Vi

∂y
, i 6= k, k = 1, ..., n.

If U(x, y) and V (x, y) are conjugate in Rn+1
+ in the above sense, then the vector-

function

F (x, y) = (U(x, y), V (x, y)) = (U(x, y), V1(x, y), ..., Vn(x, y))

is called a harmonic vector.
Define

Mp(y) = Mp(y, F ) =
{

∫

Rn

|F (x, y)|pdx
}1/p

, p > 0.

Definition 1 ([1], [7]). We say that F (x, y) ∈ Sp(Rn+1
+ ), p > 0 if for any y0 > 0

there exists a constant C(y0, F ), such that ∀y ≥ y0, Mp(y, F ) ≤ C(y0). In particular,
if C is independent of y0, then F (x, y) ∈ hp(Rn+1

+ ).
Now we define the space Hp(Rn+1

+ ). We follow the work of Fefferman and Stein[4].
Let U(x, y) be a harmonic function in Rn+1

+ , and let Uj1j2j3...jk
denote a component

of a symmetric tensor of rank k, 0 ≤ ji ≤ n, i = 1, ..., n. Suppose also that the trace
of our tensor is zero, meaning

n
∑

j=0

Ujjj3...jk
(x, y) = 0, ∀j3, ..., jk.

The tensor of rank k + 1 can be obtained from the above tensor of rank k by passing
to its gradient:

Uj1j2...jkjk+1
(x, y) =

∂

∂xjk+1

(Uj1j2j3...jk
(x, y)), x0 = y, 0 ≤ jk+1 ≤ n.

Definition 2 ([4]).We say that U(x, y) ∈ Hp(Rn+1
+ ), p > 0, if there exists a tensor

of rank k of the above type with the properties:

U0...0(x, y) = U(x, y), sup
y>0

∫

Rn

(

∑

(j)

U2
(j)(x, y)

)p/2

dx < ∞, (j) = (j1, ...jk).

It is well-known that the function
(

∑

(j)

U2
(j)(x, y)

)p/2

is subharmonic for p ≥ pk =

(n − k)/(n + k − 1), see [3],[4],[14].
We will use the “radial” and nontangential maximal functions:

F+(x) = sup
y>0

|F (x, y)|, Nα(F )(x0) = sup
(x,y)∈Γα(x0)

|F (x, y)|.
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Here
Γα(x0) = {(x, y) ∈ Rn+1

+ : |x − x0| < αy}, α > 0,

is an infinite cone with the vertex at x0. It is well-known [4] that

F (x, y) ∈ Hp(Rn+1
+ ) ⇐⇒ Nα(F )(x) ∈ Lp ⇐⇒ F+(x) ∈ Lp, p > 0.

We also define the weak maximal function

WF (x, y) = sup
ζ≥y

|F (x, ζ)|, y > 0.

The above expression is understood as folows: we fix x, and for fixed y we find the
supremum over all ζ ≥ y.

We will repeatedly use the following results.

Lemma 1. ([4], p.173). Suppose u(x, y) is harmonic in Rn+1
+ , and for some p, 0 <

p < ∞,

sup
y>0

∫

Rn

|u(x, y)|pdx < ∞,

then

(2) sup
x∈Rn

|u(x, y)| ≤ Ay−n/p, 0 < y < ∞.

Theorem 2. ([5], p. 268). Let 0 < p ≤ 1, k ∈ N, and let u : Rn+1
+ → R be a

harmonic function such that

u(x, t) ⇒x
t→∞ 0, Kk,p ≡

∫

R
n+1

+

tkp−1|Dk
n+1u(x, t)|pdxdt < C.

Then u(x, 0) = lim
t→0+

u(x, t) exists for almost all x ∈ Rn, and for all t ≥ 0,

∫

Rn

|u(x, t)|pdx ≤ AC(k, n, p)Kk,p.

Theorem 3. ([5], p. 269). Let m ∈ N, p ≥ (n− 1)/(m+n− 1) (if n = 1 we suppose
p > 0), and let u : Rn+1

+ → R be harmonic. Then, for all t > 0,

∫

Rn

|∇mu(x, t)|pdx ≤ A(m,n, p)t−mp−1

3t/2
∫

t/2

ds

∫

Rn

|u(x, t)|pdx.

Corollary 1. ([5], p. 270). Let p,m be as in Theorem 3, let b > 0, and let u :
Rn+1

+ → R be a harmonic function such that for all t > 0
∫

Rn

|u(x, t)|pdx ≤ Ct−b.

Then
∫

Rn

|∇mu(x, t)|pdx ≤ A(b,m, n, p)Ct−b−mp, (t > 0).
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In fact, the choice of p in Theorem 2 and Corollary 1 may be independent of m
(see Lemma 2).

Theorem 4. [10]. Let p > 0 and let F (x, y) = (U, V1, ..., Vn) be a harmonic vector
satisfying

(3) 1) Vi(x, y) ⇒x
y→∞ 0, i = 1, ..., n, 2) Mp(y, U) ≤ C, 3) |U | ≤ C.

Then F ∈ Hr, r > p.

Notation. We denote by Dk
i f(x, y) the partial derivative of the function f of the

order k with respect to xi, i = 1, 2, ..., n + 1. M(f)(x) denotes the usual Hardy-
Littlewood maximal function of f(x). The notation f(x, y) ⇒x

y→∞ 0 means that

f(x, y) converges to 0 uniformly with respect to x, provided y → ∞, ∇kf(x) =

(∂kf(x)

∂xk
1

, ..., ∂kf(x)
∂xk

n
). Everywhere below the constants A(k, n), C,K depend only on the

parameters pointed in parentheses, and may be different from time to time.

3. Auxiliary lemmata for the proof of Theorem 1.

The main results of this section are Theorem 5 and Theorem 7. Our first aux-
iliary result shows that in Theorem 3 and Corollary 1 the choice of p > 0 may be
independent on m ∈ N. We include it here for convenience of the reader.

Lemma 2. Let p > 0 and let F = (U, V1, ..., Vn) be such that Vi ⇒
x
y→∞ 0, i = 1, ..., n,

Mp(y, U) ≤ C. Then

Mp(y,∇kF ) ≤ ACy−k, k ∈ N.

Proof. By induction on k. Let k = 1. Fix p > 0 and let l = inf{j ∈ N : p ≥
(n − 1)/(j + n − 1)}. Let φij(x, y) be a coordinate of ∇Vi(x, y), j = 1, ..., n + 1,
xn+1 = y, i = 0, ..., n, V0 = U . Since ∇Vi(x, y) ⇒x

y→∞ 0, we may use the following
relation (see [5] or [4])

φij(x, y) =
1

(2l − 2)!

∞
∫

y

(s − y)2l−2D2l−1
n+1 φij(x, s)ds =

1

(2l − 2)!

∞
∫

0

s2l−2D2l−1
n+1 φij(x, s + y)ds.

We have |φij(x, y)| ≤ hij(x, y), where

hij(x, y) ≡
1

(2l − 2)!

∞
∫

0

s2l−2|∇lDl−1
n+1φij(x, s + y)|pds.

Theorem 3 of[5] implies (take w = ∇lDl−1
n+1φij, a = 2l − 1, A = A(l, n, p)),

∫

Rn

|φij(x, y)|pdx ≤

∫

Rn

|hij(x, y)|pdx ≤ A

∞
∫

0

s(2l−1)p−1ds

∫

Rn

|∇lDl−1
n+1φij(x, s + y)|pdx.
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Since Dl−1
n+1φij(x, y) is the l−th derivative of Vi, we use Theorem 3 to get

(4)

∫

Rn

|∇lDl−1
n+1φij(x, y)|pdx ≤

∫

Rn

|∇2lF (x, y)|pdx ≤ C y−2lp.

This gives

∫

Rn

|φij(x, y)|pdx ≤ A(l, n, p)C

∞
∫

0

s(2l−1)p−1(s + y)−2lpds = A(l, n, p)Cy−p,

and the first induction step is proved.
Assume that the statement is true for k − 1. Then Mp(y,∇k−1F ) ≤ ACy−(k−1).

To prove it for k we define l as above and apply Corollary 1 with b = k − 1, m = 1,
u = ∇k−1F . ¤

Lemma 3. Let DiU ⇒x
y→∞ 0, i = 1, ..., n, and let

(5) Mp(y,Dn+1U) ≤ Cy−1

for some p > 0. Then

(6)

∫

Rn

(

sup
y>0

|Dn+1U(x, y + y0)|
)p

dx ≤ AC, ∀y0 > 0, A = A(n, p, y0).

Proof. Let p > 1. Then (see [12])

‖ sup
y>0

|Dn+1U(·, y + y0)|‖p ≤ CMp(y + y0, Dn+1U) ≤ AC, A = A(n, p, y0).

Now let 0 < p ≤ 1. Assume that

(7)

∞
∫

0

∫

Rn

sp−1|∇2U(x, s + y0)|
pdxds ≡

1
∫

0

∫

Rn

+

∞
∫

1

∫

Rn

< C(y0) < ∞.

Then Lemma 2, Theorem 2 (with Dn+1U instead of u and k = 1), and the tensor
representation of Dn+1U from [4], imply Dn+1U(x, y + y0) ∈ Hp. This gives (6).

Thus, we have to show (7). By Theorem 3, (5) yields

(8) Mp(y,∇2U) ≤ ACy−2.

Then, the first integral in the right-hand side of (7) is finite, since

Mp(y + y0,∇
2U) ≤ AC(y + y0)

−2 ≤ AC(y0), ∀y0 > 0.

On the other hand,

∞
∫

1

sp−1ds

∫

Rn

|∇2U(x, s + y0)|
pdx ≤ AC

∞
∫

1

sp−1(s + y0)
−2pds ≤ AC(y0) < ∞.

¤
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Let Vi be components of the harmonic vector F = (U, V1, ..., Vn). By the mean-
value theorem,

(9) Vi(x, y) = Vi(x, y + 1) − Dn+1Vi(x, y + θi), 0 < θi(x, y) < 1.

Lemma 4. Let F = (U, V1, ..., Vn) ∈ Hq and let θi be as in (9), i = 0, ..., n. Then

(10)

∫

Rn

(

sup
y>0

|DiU(x, y + θi)|
)q

dx ≤ AC.

Proof. We have

(11) sup
y>0

|Vi(x, y)| ≤ sup
y>0

|Vi(x, y + 1)| + sup
y>0

|Dn+1Vi(x, y + θi)|,

(12) sup
y>0

|Dn+1Vi(x, y + θi)| ≤ 2F+(x),

where i = 0, ..., n, V0 = U . Then, (12) implies

(13)

∫

Rn

(

sup
y>0

|Dn+1Vi(x, y + θi)|
)q

dx ≤ AC.

To get the desired result we apply the Cauchy-Riemann equations DiU(x, y) =
Dn+1Vi(x, y). ¤

In the following result we observe that θi > 0 on a set, controlled by estimate
(2). Then we use the fact that under conditions (14) the supremum sup

y>0
|F (x, y)| is

attained at the boundary.

Theorem 5. Let 0 < p < q and let F = (U, V1, ..., Vn) be a harmonic vector in Rn+1
+ .

Then F ∈ hp, provided

(14) 1) Mp(y + 1, F ) ≤ C, 2) Mp(y,Dn+1U) ≤ Cy−1, 3) F ∈ Hq.

Moreover, F ∈ Hr ∀r : p ≤ r ≤ q if and only if conditions (14) are valid.

Proof. We prove at first that (14) implies F ∈ hp. Let θi be as in (9). Due to 2),
(6), and 1), it is enough to show that sup

y>0
|Dn+1Vi(·, y + θi(·, y))| ∈ Lp(Rn). This will

follow from the Cauchy-Riemann equations and

(15)

∫

Rn

(

sup
y>0

|DiU(x, y + θi(x, y))|
)p

dx < ∞.

Thus, we prove (15). Condition 3) and Lemma 1 imply

(16) sup
x∈Rn

|DiU(x, y + θi)| ≤ sup
x∈Rn

AC

(y + θi)1+n/q
≤ AC(y + αi(y))−1−n/q,

where αi(y) = inf
x∈Rn

θi(x, y). Define

(17) Li = {x ∈ Rn : sup
y>0

|DiU(x, y + θi)| ≤ sup
y>0

AC

(y + αi(y))1+n/q
≤ 1}.
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Then ∀x ∈ CLi (the complement of Li) we have sup
y>0

|DiU(x, y + θi)| > 1. Then

(18)

∫

CLi

(

sup
y>0

|DiU(x, y + θi(x, y))|
)p

dx ≤

∫

Rn

(

sup
y>0

|DiU(x, y + θi(x, y))|
)q

dx ≤ AC

due to condition 3) and Lemma 4.
We estimate the integral in (15) over Li. Observe that for fixed x ∈ Li,

sup
y>0

|DiU(x, y + θi(x, y))| ≤ sup
y>0

|DiU(x, y + αi(y))|,

and αi ≡ inf
y>0

αi(y) > 0. We put γ = min
i=0,...,n

αi > 0, and take any 0 < y0 ≤ γ. Then

(19)

∫

Li

(

sup
y>0

|DiU(x, y + θi(x, y))|
)p

dx ≤

∫

Rn

(

sup
y>0

|∇U(x, y + y0)|
)p

dx ≤ AC.

Indeed, condition 3) and Theorem 3 imply Vi(x, y) ⇒x
y→∞ 0. The same is true for

all partial derivatives of Vi, i = 0, ..., n, V0 = U . Now the second inequality in (19)
follows from 2) and Lemma 3. Taking into account (19), (18), we get (15). Thus,
F ∈ hp.

Now, F ∈ Hr ∀r : p ≤ r ≤ q, implies (14) by Theorem 3. We prove the converse
statement. It is enough to show that F ∈ Hp, or (sup

y>0
|F (·, y)|)p ∈ L1(Rn). Since

F ∈ hp, we apply the Fatou Lemma to have

(20)

∫

Rn

|F (x, 0)|pdx =

∫

Rn

(

lim
y→0

|F (x, y)|
)p

dx ≤ lim
y→0

Mp(y, F ) ≤ C.

We claim that sup
y>0

|F (x, y)| = |F (x, 0)| and our result follows from (20). Since for

fixed x0 ∈ Rn the function WF (x0, y) ≡ sup
η≥y

|F (x0, η)| is nonincreasing in y, we have

sup
y>0

|F (x0, y)| = sup
y>0

sup
η≥y

|F (x0, η)| = lim
y→0

sup
η≥y

|F (x0, η)| = |F (x0, 0)|.

Even if sup
y>0

|F (x0, y)| = |F (x0, y0)| for some y0 > 0, then WF (x0, y) = WF (x0, y0)

for all 0 ≤ y ≤ y0, and we may put |F (x0, y0)| = |F (x0, 0)|. ¤

Theorem 6. Let 0 < p < q, k ∈ N, and let F = (U, V1, ..., Vn) be a harmonic vector
in Rn+1

+ . Then F ∈ Hr ∀r : p ≤ r ≤ q if and only if

(21) 1) Mp(y + 1, F ) ≤ C, 2) Mp(y,Dk
n+1U) ≤ Cy−k, 3) F ∈ Hq.

Proof. By Corollary 1, and the inverse statement, proved in [9], conditions (14), (21)
are equivalent. ¤

Theorem 7. Let p > 0 and let F = (U, V1, ..., Vn) be a harmonic vector in Rn+1
+ such

that

(22) 1) Mp(y + 1, F ) ≤ C, 2) Mp(y, U) ≤ C, 3) |U(x, y)| ≤ C.

Then F ∈ Hr, r ≥ p.
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Proof. By Theorem 4 we have F ∈ Hr, r > p. Let r = p. By Lemma 1 and Theorem
3 we have Mp(y,5kU) ≤ Cy−k, and we may use Theorem 6. ¤

Lemma 5. Let 0 < p < q and let F = (U, V1, ..., Vn) be a harmonic vector in Rn+1
+

such that

(23) 1) Mp(y + 1, F ) ≤ C, 2)

∫

Rn

(

sup
η≥y

|Dn+1U(x, η)|
)q

dx ≤ C.

Then F ∈ Hq.

Proof. By the mean-value theorem,

sup
y>0

|U(x, y)| ≤ sup
y>0

|U(x, y + 1)| + sup
y>0

|∇U(x, y)|,

and it is enough to show that (sup
y>0

|U(·, y + 1)|)p ∈ L1. To prove this, we apply

Theorem 3, the mean-value theorem again,

|U(x, y + 1)| ≤ |U(x, y + 2)| + sup
y>0

|Dn+1U(x, y + 1 + θ)|,

and observe that the conditions of Theorem 7 are satisfied with y+1 instead of y. ¤

4. Proof of Theorem 1.

The proof is given in two lemmata presented below.

Lemma 6. Let k ∈ N, 0 < p < q and let F = (U, V1, ..., Vn) be a harmonic vector in
Rn+1

+ . Then F and all its partial derivatives up to order k belong to H r, p ≤ r ≤ q,
if and only if

(24) 1) Mp(y + y0, F ) ≤ C(y0) ∀y0 > 0, 2)

∫

Rn

(

sup
η≥y

|Dk
n+1U(x, η)|

)q

dx ≤ C.

Proof. The only if part is trivial. We prove if by induction. Let k = 1. We show at
first that F ∈ Hr, p ≤ r ≤ q. By Lemma 5 we have F ∈ Hq, and it is enough to show
that F ∈ Hp. To this end, we apply the mean-value theorem and repeat the proof of
Theorem 5 begining with (15). As in Theorem 5 we define Li, (see (17)), and (18)
follows from 2). The last estimate in (19) follows from Theorem 3 and Lemma 7.
Conditions (22) are satisfied with ∇U instead of F , Dn+1U instead of U , and y + y0

instead of y.
To show that all partial derivatives of the first order belong to H r, p ≤ r ≤ q one

has to proceed as above by changing ∇U by ∇2U , and D2
n+1U by Dn+1U .

Assume that the statement is true for k − 1, and we have to prove it for k. By
Theorem 3 we have 1) with Dk−1

n+1U instead of F , and the result follows. ¤

Lemma 7. Conditions of the theorem are equivalent to conditions of the previous
lemma.
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Proof. It is enough to prove that Mp(y + 1, F ) ≤ C and 2) of (24) imply 1) of (24).
This will follow from F ∈ Hq. Since Vi(x, y) ⇒x

y→∞ 0, i = 1, ..., n, it is enough to

show that U ∈ Hq. We will subsequently show that all Dk−1
n+1U,Dk−2

n+1U, ..., U ∈ Hq.

In fact, we prove that Dk−1
n+1U ∈ Hq. The proof of Dk−2

n+1U, ..., U ∈ Hq is similar.

Observe that Dk−1
n+1U ∈ Hq follows from Dk−1

n+1U ∈ hq. Indeed, let Dk−1
n+1U ∈ hq. By

the mean-value theorem we have

sup
y>0

|Dk−1
n+1U(x, y)| ≤ sup

y>0
|Dk−1

n+1U(x, y + 1)| + sup
y>0

|Dk
n+1U(x, y)|,

and we may apply Lemma 7, (with p = q, Dk−1
n+1U(x, y +1) instead of U(x, y), ∇k−1F

instead of F ), to obtain
∫

Rn

(

sup
y>0

|Dk−1
n+1U(x, y + 1)|

)p

dx < ∞.

The assumption Dk−1
n+1U ∈ hq and Lemma 1 are used to satisfy the third condition of

Lemma 7. The above inequality gives Dk−1
n+1U ∈ Hq.

Thus, it remains to prove that Dk−1
n+1U(x, y) ∈ hq. By the mean-value theorem,

|Dk−1
n+1U(x, y)| ≤ |Dk−1

n+1U(x, y + 1)| + sup
y>0

|Dk
n+1U(x, y)|,

and it is enough to prove that Dk−1
n+1U(x, y + 1) ∈ hq. Again, by the mean-value

theorem,

|Dk−1
n+1U(x, y + 1)| ≤ |Dk−1

n+1U(x, y + 1 + 1)| + sup
y>0

|Dk
n+1U(x, y)|,

but now we may use the assumption Mp(y + 1, F ) ≤ C to show that for r ≥ p,
Mr(y + 2, Dk−1

n+1U) ≤ C. To this end, we apply Theorem 3, Lemma 1, and take y + 1
instead of y. ¤
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