RECONSTRUCTION OF CONVEX BODIES OF
REVOLUTION FROM THE AREAS OF THEIR
SHADOWS

D. RYABOGIN AND A. ZVAVITCH

ABSTRACT. In this note we reconstruct a convex body of revolu-
tion from the areas of its shadows by giving a precise formula for
the support function.

1. INTRODUCTION

The problem of reconstruction of a convex body from the areas of
its shadows, goes back to A. D. Aleksandrov [All], who proved that
an origin symmetric convex body K in R" is uniquely defined by the
volumes of its projections. Recently R. Gardner and P. Milanfar [GM]
provided an algorithm for reconstruction of an origin-symmetric convex
body K from the volumes of its projections.

It is plausible that there exist an explicit formula, connecting the
support function of K with volumes of its shadows. The similarities
between sections and projections, pointed out in [KRZ2|, suggest that
it should exist as a dual version of the formula for sections, proved by
A. Koldobsky [K]

b
m(n—1)

Note that by inverting the Fourier transform in (1), one can find the
direct formula for the norm of K, given the volumes of sections.

It was proved in [KRZ1] that there is a connection between the vol-
umes of projections of K and the curvature function fx via the Fourier
transform:

Vol (K N6+ = (I I HM0), o€ s™t (1)

1 ~
Vol,,_1(K|6+) = —= fx(0), voes (2)

Here fr(z) = |z|™ ! fx(z/|z]), = € R™\ {0}, is the extension of
fx(z), z € S, to a homogeneous function of degree —n — 1.
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A.D. Aleksandrov ([Al2]; [Pog], p. 456; [Sc|, Corollary 2.5.3) showed
that fx is the sum X (hg) of the principal minors of order n — 1 of the
Hessian matrix of the support function hy. This suggests a dual version

of (1)

1] ——
Vol, 1 (K|6F) = —=2(hk)(0),  VOeS™, (3)
T
which in the three dimensional case has the form:

Vola(K|9%) = —= ( hos oy | || hoe e || By

A
v hmy hyy hmz hzz hzy hzz ) (9)

Unfortunately, to invert the above formulas one needs not only to
invert the Fourier transform, but also to solve a nonlinear differential
equation. It turns out that in the case of a body of revolution, this
differential equation can be considerably simplified. In Section 2 we
show how to obtain an expression for hx, given the curvature function
fx. In Section 3 we give a simple formula for the curvature function via
the projections of K (cf. [R], p. 125). All arguments can be generalized
to higher dimensions.

Let » > be a natural number. A real valued function on an open
subset U of R? is said to be of class C™ (cf. [Ga3], p. 22) if it is
r—times differentiable, that is all partial derivatives of order r exist
and are continuous. We denote this class by C"(U). A function f(o)
on o € S? is said to be in C7(S?) if its homogeneous extension

Y, 2
P2 e one qoy).
VTt y - +z2

We say that a convex body K is of class C” (cf. [Ga3], p. 23) if 0K is
of class C” as a submanifold of R3. If £ > 2, we say that K is of class
C*¥ (cf. [Ga3], p. 25), if K is of class C* and the Gauss curvature of
K at each point is positive.

Without loss of generality we may assume that ez is the axis of
revolution. Our main result is the following

Theorem 1. Let (z,y,z) € S?, and let K be of class C3. Then

arcsin |z

bl = VI olaresnle) el [
0

where

w/2

o(t) = /sin(2a) fla)da,
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sin «

f(a) = fr(0,cos a,sina) = sina / ( ds X

: T
6 sin? o — 52)2

£ oo (=)

ds
0<a<m/2

We would like to make a remark concerning the smoothness hypoth-
esis in our theorem. It is clear that if the function

Voly(K|-4) - u € 5% — Voly (K |ut)
belongs to C3(S5?), and is rotation-invariant, then the function
Voly(K[(0,-, V1 — 2)1) 1 s € (0,1) — Volo(K|(0, 5, V1 — s2)4)

belongs to C3((0,1)). Thus, it is enough to essume that K is such that
Voly(K|-+) € C3(S?). This is true, provided fx € C3(S?) (see Lemma
4). One can weaken this hypothesis, but this is not our purpose here
(see [M]).

We also remark that in many problems of convexity the bodies of
revolution serve as a main source for examples and counterexamples,
see for example the Shephard problem [P], ([Ga3], p. 142), or the
Busemann-Petty problem [Gal], [Ga2], [Pa]. Therefore, different types
of special formulas for bodies of revolution may lead to the genertal
development of the techniques related to the more general classes of
convex bodies (cf. [Ga2] and [GKS]). We hope that the formulas ob-
tained in Lemma 1 and Theorem 1 will help to provide new connections
between the volumes of sections (1) and projections (2) of general con-
vex bodies.

2. FROM THE CURVATURE TO THE SUPPORT FUNCTION

We recall that the curvature function fx is the reciprocal of the
Gauss curvature viewed as a function of the unit normal vector ([Sc],
p. 419). The support function of the convex body K is defined as
hx(§) = sup{n- & n € K}. It is proved (see [Sc|, pp. 106-111) that
K is of class C’i if and only if hx € C? and the Gauss curvature of K
exists and is positive everywhere.

It is enough to consider the case x,y,z > 0 (all other cases can
be reconstructed by symmetry). We will use the following notation
fr(z,y,2) = frx(u,v), u = /2% + y? and v = z, and our goal is to find
hx(z,y,z) = h(u,v). We will need three elementary lemmas.
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Lemma 1. Let K be a body of revolution, then the equation

Naw Py hayw h Py, h
— T T + T Tz + Yy 2y
fx ' hay hyy | 7| B hos || By s
has the form
hy
fK(uav>:_(huu+hvv)7 U2+’U2:1.
U
Proof : A straightforward computation gives
ha: = huLa
Va2 +y?
2 y?
ha:a: = huu + hu )
22 + 42 (22 + y2)3/2
2 2
_ Yy L
hyy = D 2+ y2 + hy (x2 + y2)3/2’
Yy Yy

hay = huux2 + 2 — ha (22 + y2)3/2‘

Observe that due to homogeneity, the Hessian of h(u,v) is zero. Hence

hmm hmy 1
= _huuhu7
' hmy hyy U
and
hmm hmz hyy hzy _ l
' hmz hzz +' hzy hzz N uhvvhu-

O

Using the homogeneity of fx and hx we may extend the result above
to the case (z,y, z) € R? (or, the same, (u,v) € R?):

(0 + ) il 0) = 22 (s + ). )

Our goal is to solve this differential equation for h.

Lemma 2. Define h(0) = h(cos,sin®) and f(0) = fx(cosf,sinb),
0 € [0,7/2]. Then equation (4) can be rewritten as follows

cosOf(0) = (h+ L") (hcosf — h'sinf). (5)
Proof : We pass to polar coordinates in R? and use the fact that

sin 6

h, = cosOh, — ——hy,
r

and . . .
huu + hvv = _hrr + _hr + —2h99.
r r r
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Since h is a homogeneous function of degree one, we have
hy = cosO h(0) — sinf hy(6), (6)
and
1 1
huw + hoy = ; h(@) + ; h@g(@)

Finally we plug these formulas into (4) and get

T fie(0) =

This gives the desired result.

(cos Oh(0) — sinOhy(H)) (lh(ﬁ) + %hea(e)) .

r cos 6 r

Next we denote ¢(f) = hcos@ — h'sinf and observe that
¢'(0) = h'cos@ — hsinf — h"sin — h' cosf = —sinf(h + h").
Our equation (5) becomes

—sinf cosOf(0) = ¢(0)d'(6),

¢ — /sin(2a) fla)da = ¢*(0).

Lemma 3. We have

6(0) = / sin(2a) f(a)da.

Proof : Since ¢(0) = h(0), we have

/6 sin(2 = ¢*(0).

Now the Cauchy projection formula ([Sc|, [Ga3]), and the fact that the
projection of K onto the xy-plane is a disk of radius h(0), give

h?(0) = Voly(K|ez) =
w/2

%/|z|fK(x’y,z)da(x,y7z) = ﬂ/sin(Qa)f(a)da.

0
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Thus
w/2
»*(0) = /sin(Za)f(a)da.
0
It remains to show that ¢ is nonnegative. This is a consequence of the
fact that ¢(0) = h.(0) (see (6)), cos @ > 0 and the following proposition.
Proposition: Let L C R® have a C' boundary. Assume also that

if (1, ,x,) € L, then (121, --enxy) € L for any choice of signs
€1, ,En. We have
Ohy,
U; Up, -y Uiy ooy Upy) > 0.
8xz~( 1 )

Proof: It is well known ([Sc|, p. 40) that
max v -y = gradhr(u).

Assume that ui%’%(u) < 0 for some 1 < i < n. To get a contradiction

we consider a point y € L such that all coordinates of y, with the
exception of the ith, are equal to coordinates of gradhp(u), and y; =

- ‘?9”75 (u). But then

u-y >u-gradhg(u).

O
To obtain a formula for h it remains to solve
»(0) = hcosh — h'sin b, (7)
or after differentiation:
/
~ 0O ®)

sin 0
Note that ¢'(f)/siné is a continuous function on [0, 7/2]. Using stan-
dard method we solve (8) with the initial values

/2
h(0) = /sin(Qa) fla)do

and h’(0) = 0, (the last one comes from the fact that K has a smooth
boundary, and h(6) is an even function):

w/2

h(0) = cosf / sin(2a) f(a)da + sin 6 cos? tf(t)dt

/0 /2 '
0 \/f sin(2a) f(a)da

t
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3. FROM PROJECTIONS TO THE CURVATURE FUNCTION

The volume of the projection of the convex body K is connected
with the curvature function fx via the formula of Cauchy:

Vol <K’ul) = %/|u Az, y,2)| fr(z,y, 2)do(x,y, 2). (9)

Thus, in view of Section 2, it is enough to invert (9). Observe that in
the case of a body of revolution the functions fx and u — Voly(K|u')
are invariant under rotations around the axis, so it is enough to invert

(9) at the point u = (0, s, V1 — s2), s € [0, 1]. Denote
p(s) = Voly(K|(0, 5, V1 — s2)*).
Then (9) has the form

_ /_llf(z)dz /_11(1 2y

We substitute tv/1 — 22s = 7, and use the evenness of f(z) to get:

-
w=2 fr [ -

1— 2254+ 2v1 — 52| dt.

n+2V1—s2|dy =
—sv/1-22
s 1 svV1—22
/—i—/ f(z)dz / [(1—,22)52—772}_% n+2V1— 2| dy =
0 s —sv1—22
=1+ L.
Observe that z < s implies /1 —82 < sm, SO
s svV1—22
I = 2[/f(z)dz / [(1—2%)s" — 772}_% <77 + zﬂ) dn+
0 B
s e
/f(z)dz / [(1—27%)s* — 772}_% <—77 — z\/1—752) dn}.
0 —sv/1-22
This gives
s svV1—22

L= 2[/sz(z>dz / [(1— 22)s2 — 2] "2 dy—

0 —sv1=22
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s —2v/1-82
2 [ [ a8 ) -
0 i
s —2v/1—52
—Q/sz(z)dz / [(1—2%)s” — 772}_% dn}.
0 —sv/1-22
Similarly, 1 > z > s implies sv/1—22< zm, SO
1 sV1—22
I = Q/f(z)zmdz / [(1-2%)s" — 772}_% dn.
s —sv/1-22
Now we have
1 svV1—22
©(s) :I1+12=2[/z\/1—752f(z)dz / [(1—,22)52—772}_%0377—
0 —sv/1-22
s —2V/1—52
-2 / f(z)dz / [(1—2%)s” — 772}_% ndn—
0 —sv/1-22

—2/,2\/1 — s2f(2)dz [(1-2%)s" — 772}_% dn}.
0 —sv/1-22
In other words,

©(s) :4[%\/@/2]0(2)6124-/08\/@][(2)612—

/ 21 — s2f(z) arccos z%dz]

We can simplify this formula, dividing both sides by /1 — s? and taking
the derivative with respect to s € (O 1). We get

o | VR R HG)

i (75) =

We define : o
o s(1—s%)%2d ©(s)
o) = T (A,
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to get the integral equation
= / Vs?—22f(2)dz
0

which can be inverted by standard methods, see for example ([H], p.
11, n = 4):

f(z) = %/Zz(f _ )b (@)/ds, 0<2<1.

= - (2 (- ()

O

The following result is well-known (see [Sc|, p. 431, relation (A.16))
and [See]. We include it here for the convenience of the reader.

Lemma 4. The function
Voly(K|-4) s u € 5% — Voly (K |ut)
belongs to C3(S?), provided fx € C3(S?).

Proof : Let n > 3, d,(m) = WE2m2tm 3! "o et

m!(n—2)!
o] dn(m
Z Z S Y ( Jmp = / f(0)Ym,u(o)do
m=1 p=1 gn—1

be the Fourier-Laplace series of f € L*(S™!). Tt is well-known (see
[See]), that f € C?"(S™!) implies
Fl S em™, [DY(0)] < emPHE
for all multi-indices j, |j| =71+ ...+ jn=10,1,2, ...,
BIH
(Ox1)7r...(Oxy)In
Let 2r > 3(n — 2)/2 + |j| + 1. It follows that the derivatives D’ of

the Fourier-Laplace series of f converge uniformly and absolutely to
D7 f(0). Indeed, d,(m) ~ cm™ % as m — oo, and we have

Dl =

o0 dn(m

|Z Z meD Ym“ ’<szzr 3/2(n 2) |g|

m=1 p=1
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Let fx € C*(S™1), 2r > |j| +n — 7/2. Then the Cauchy formula
and the Fourier-Laplace decomposition of the Cosine transform imply

Djvoln_l(Kwi):Df(% / |9~x|fK(;c)dx) -
.

o0 dn(m

= Z Z Tm fK muD Ymu(e)

m=1 p=1
where v, ~ ¢cm~Gt"/2 as m — oo. Moreover,

o0 dn(m

)
1
120 D (ficdman DY (0)] < szw Sz 0%

m=1 p=1

Thus, the function Volp(K|-+) : u € S? — Volp(K|ut) is three times
continuously differentiable, provided fx € C*"(S?), 2r > 3.

O
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