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Abstract. In this note we reconstruct a convex body of revolu-
tion from the areas of its shadows by giving a precise formula for
the support function.

1. Introduction

The problem of reconstruction of a convex body from the areas of
its shadows, goes back to A. D. Aleksandrov [Al1], who proved that
an origin symmetric convex body K in Rn is uniquely defined by the
volumes of its projections. Recently R. Gardner and P. Milanfar [GM]
provided an algorithm for reconstruction of an origin-symmetric convex
body K from the volumes of its projections.

It is plausible that there exist an explicit formula, connecting the
support function of K with volumes of its shadows. The similarities
between sections and projections, pointed out in [KRZ2], suggest that
it should exist as a dual version of the formula for sections, proved by
A. Koldobsky [K]

Voln−1(K ∩ θ⊥) =
1

π(n− 1)
(‖ · ‖−n+1

K )∧(θ), θ ∈ Sn−1. (1)

Note that by inverting the Fourier transform in (1), one can find the
direct formula for the norm of K, given the volumes of sections.

It was proved in [KRZ1] that there is a connection between the vol-
umes of projections of K and the curvature function fK via the Fourier
transform:

Voln−1(K|θ⊥) = − 1

π
f̂K(θ), ∀θ ∈ Sn−1. (2)

Here fK(x) = |x|−n−1 fK(x/|x|), x ∈ Rn \ {0}, is the extension of
fK(x), x ∈ Sn−1, to a homogeneous function of degree −n − 1.
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A. D. Aleksandrov ([Al2]; [Pog], p. 456; [Sc], Corollary 2.5.3) showed
that fK is the sum Σ(hK) of the principal minors of order n− 1 of the
Hessian matrix of the support function hK. This suggests a dual version
of (1)

Voln−1(K|θ⊥) = − 1

π
Σ̂(hK)(θ), ∀θ ∈ Sn−1, (3)

which in the three dimensional case has the form:

Vol2(K|θ⊥) = − 1

π

(∣∣∣∣
hxx hxy

hxy hyy

∣∣∣∣ +

∣∣∣∣
hxx hxz

hxz hzz

∣∣∣∣ +

∣∣∣∣
hyy hzy

hzy hzz

∣∣∣∣
)∧

(θ).

Unfortunately, to invert the above formulas one needs not only to
invert the Fourier transform, but also to solve a nonlinear differential
equation. It turns out that in the case of a body of revolution, this
differential equation can be considerably simplified. In Section 2 we
show how to obtain an expression for hK , given the curvature function
fK. In Section 3 we give a simple formula for the curvature function via
the projections of K (cf. [R], p. 125). All arguments can be generalized
to higher dimensions.

Let r ≥ be a natural number. A real valued function on an open
subset U of R3 is said to be of class Cr (cf. [Ga3], p. 22) if it is
r−times differentiable, that is all partial derivatives of order r exist
and are continuous. We denote this class by Cr(U). A function f(σ)
on σ ∈ S2 is said to be in Cr(S2) if its homogeneous extension

f(
(x, y, z)√

x2 + y2 + z2
) ∈ Cr(R3 \ {0}).

We say that a convex body K is of class C r (cf. [Ga3], p. 23) if ∂K is
of class Cr as a submanifold of R3. If k ≥ 2, we say that K is of class
Ck

+ (cf. [Ga3], p. 25), if K is of class Ck and the Gauss curvature of
K at each point is positive.

Without loss of generality we may assume that e3 is the axis of
revolution. Our main result is the following

Theorem 1. Let (x, y, z) ∈ S2, and let K be of class C5
+. Then

hK(x, y, z) =
√

x2 + y2 φ(arcsin |z|) + |z|
arcsin |z|∫

0

cos2 tf(t)

φ(t)
dt,

where

φ(t) =

√√√√√
π/2∫

t

sin(2α) f(α)dα,
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f(α) = fK(0, cos α, sinα) =
sinα

6

sinα∫

0

ds

(sin2 α − s2)
1

2

×

d

ds

[
1

s

d

ds

(
s(1 − s2)3/2 d

ds

(
Vol2(K|(0, s,

√
1 − s2)⊥)√

1 − s2

))]
,

0 ≤ α ≤ π/2.

We would like to make a remark concerning the smoothness hypoth-
esis in our theorem. It is clear that if the function

Vol2(K|·⊥) : u ∈ S2 → Vol2(K|u⊥)

belongs to C3(S2), and is rotation-invariant, then the function

Vol2(K|(0, ·,
√

1 − ·2)⊥) : s ∈ (0, 1) → Vol2(K|(0, s,
√

1 − s2)⊥)

belongs to C3((0, 1)). Thus, it is enough to essume that K is such that
Vol2(K|·⊥) ∈ C3(S2). This is true, provided fK ∈ C3(S2) (see Lemma
4). One can weaken this hypothesis, but this is not our purpose here
(see [M]).

We also remark that in many problems of convexity the bodies of
revolution serve as a main source for examples and counterexamples,
see for example the Shephard problem [P], ([Ga3], p. 142), or the
Busemann-Petty problem [Ga1], [Ga2], [Pa]. Therefore, different types
of special formulas for bodies of revolution may lead to the genertal
development of the techniques related to the more general classes of
convex bodies (cf. [Ga2] and [GKS]). We hope that the formulas ob-
tained in Lemma 1 and Theorem 1 will help to provide new connections
between the volumes of sections (1) and projections (2) of general con-
vex bodies.

2. From the curvature to the support function

We recall that the curvature function fK is the reciprocal of the
Gauss curvature viewed as a function of the unit normal vector ([Sc],
p. 419). The support function of the convex body K is defined as
hK(ξ) = sup{η · ξ, η ∈ K}. It is proved (see [Sc], pp. 106-111) that
K is of class C2

+ if and only if hK ∈ C2 and the Gauss curvature of K
exists and is positive everywhere.

It is enough to consider the case x, y, z ≥ 0 (all other cases can
be reconstructed by symmetry). We will use the following notation

fK(x, y, z) = fK(u, v), u =
√

x2 + y2 and v = z, and our goal is to find
hK(x, y, z) = h(u, v). We will need three elementary lemmas.
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Lemma 1. Let K be a body of revolution, then the equation

fK =

∣∣∣∣
hxx hxy

hxy hyy

∣∣∣∣ +

∣∣∣∣
hxx hxz

hxz hzz

∣∣∣∣ +

∣∣∣∣
hyy hzy

hzy hzz

∣∣∣∣
has the form

fK(u, v) =
hu

u
(huu + hvv) , u2 + v2 = 1.

Proof : A straightforward computation gives

hx = hu
x√

x2 + y2
,

hxx = huu
x2

x2 + y2
+ hu

y2

(x2 + y2)3/2
,

hyy = huu
y2

x2 + y2
+ hu

x2

(x2 + y2)3/2
,

hxy = huu
xy

x2 + y2
− hu

xy

(x2 + y2)3/2
.

Observe that due to homogeneity, the Hessian of h(u, v) is zero. Hence
∣∣∣∣

hxx hxy

hxy hyy

∣∣∣∣ =
1

u
huuhu,

and ∣∣∣∣
hxx hxz

hxz hzz

∣∣∣∣ +

∣∣∣∣
hyy hzy

hzy hzz

∣∣∣∣ =
1

u
hvvhu.

2

Using the homogeneity of fK and hK we may extend the result above
to the case (x, y, z) ∈ R3 (or, the same, (u, v) ∈ R2):

(u2 + v2)fK(u, v) =
hu

u
(huu + hvv) . (4)

Our goal is to solve this differential equation for h.

Lemma 2. Define h(θ) = h(cos θ, sin θ) and f(θ) = fK(cos θ, sin θ),
θ ∈ [0, π/2]. Then equation (4) can be rewritten as follows

cos θf(θ) = (h + h′′) (h cos θ − h′ sin θ) . (5)

Proof : We pass to polar coordinates in R2 and use the fact that

hu = cos θhr −
sin θ

r
hθ,

and

huu + hvv =
1

r
hrr +

1

r
hr +

1

r2
hθθ.
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Since h is a homogeneous function of degree one, we have

hu = cos θ h(θ) − sin θ hθ(θ), (6)

and

huu + hvv =
1

r
h(θ) +

1

r
hθθ(θ).

Finally we plug these formulas into (4) and get

r2r−4fK(θ) =
1

r cos θ
(cos θh(θ) − sin θhθ(θ))

(
1

r
h(θ) +

1

r
hθθ(θ)

)
.

This gives the desired result.

2

Next we denote φ(θ) = h cos θ − h′ sin θ and observe that

φ′(θ) = h′ cos θ − h sin θ − h′′ sin θ − h′ cos θ = − sin θ(h + h′′).

Our equation (5) becomes

− sin θ cos θf(θ) = φ(θ)φ′(θ),

or

c1 −
θ∫

0

sin(2α) f(α)dα = φ2(θ).

Lemma 3. We have

φ(θ) =

√√√√√
π

2∫

θ

sin(2α) f(α)dα.

Proof : Since φ(0) = h(0), we have

h2(0) −
θ∫

0

sin(2α) f(α)dα = φ2(θ).

Now the Cauchy projection formula ([Sc], [Ga3]), and the fact that the
projection of K onto the xy-plane is a disk of radius h(0), give

πh2(0) = Vol2(K|e⊥3 ) =

1

2

∫

S2

|z|fK(x, y, z)dσ(x, y, z) = π

π/2∫

0

sin(2α) f(α)dα.
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Thus

φ2(θ) =

π/2∫

θ

sin(2α) f(α)dα.

It remains to show that φ is nonnegative. This is a consequence of the
fact that φ(θ) = hu(θ) (see (6)), cos θ ≥ 0 and the following proposition.
Proposition: Let L ⊂ Rn have a C1 boundary. Assume also that

if (x1, · · · , xn) ∈ L, then (ε1x1, · · · εnxn) ∈ L for any choice of signs

ε1, · · · , εn. We have

ui
∂hL

∂xi
(u1, · · · , ui, · · · , un) ≥ 0.

Proof: It is well known ([Sc], p. 40) that

max
y∈L

u · y = u · gradhL(u).

Assume that ui
∂hL

∂xi

(u) < 0 for some 1 ≤ i ≤ n. To get a contradiction
we consider a point y ∈ L such that all coordinates of y, with the
exception of the ith, are equal to coordinates of gradhL(u), and yi =
−∂hL

∂xi

(u). But then

u · y > u · gradhL(u).

2

To obtain a formula for h it remains to solve

φ(θ) = h cos θ − h′ sin θ, (7)

or after differentiation:

− φ′(θ)

sin θ
= h′′ + h. (8)

Note that φ′(θ)/ sin θ is a continuous function on [0, π/2]. Using stan-
dard method we solve (8) with the initial values

h(0) =

√√√√√
π/2∫

0

sin(2α) f(α)dα

and h′(0) = 0, (the last one comes from the fact that K has a smooth
boundary, and h(θ) is an even function):

h(θ) = cos θ

√√√√√
π/2∫

θ

sin(2α) f(α)dα + sin θ

∫ θ

0

cos2 tf(t)dt√
π/2∫
t

sin(2α) f(α)dα

.
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3. From projections to the curvature function

The volume of the projection of the convex body K is connected
with the curvature function fK via the formula of Cauchy:

Vol2
(
K

∣∣∣u⊥
)

=
1

2

∫

S2

|u · (x, y, z)|fK(x, y, z)dσ(x, y, z). (9)

Thus, in view of Section 2, it is enough to invert (9). Observe that in
the case of a body of revolution the functions fK and u → Vol2(K|u⊥)
are invariant under rotations around the axis, so it is enough to invert
(9) at the point u = (0, s,

√
1 − s2), s ∈ [0, 1]. Denote

ϕ(s) = Vol2(K|(0, s,
√

1 − s2)⊥).

Then (9) has the form

ϕ(s) =

∫ 1

−1

f(z)dz

∫ 1

−1

(1 − t2)−
1

2

∣∣∣t
√

1 − z2s + z
√

1 − s2

∣∣∣ dt.

We substitute t
√

1 − z2s = η, and use the evenness of f(z) to get:

ϕ(s) = 2

1∫

0

f(z)dz

s
√

1−z2∫

−s
√

1−z2

[
(1 − z2)s2 − η2

]− 1

2

∣∣∣η + z
√

1 − s2

∣∣∣ dη =

2




s∫

0

+

1∫

s


 f(z)dz

s
√

1−z2∫

−s
√

1−z2

[
(1 − z2)s2 − η2

]− 1

2

∣∣∣η + z
√

1 − s2

∣∣∣ dη =

= I1 + I2.

Observe that z < s implies z
√

1 − s2 < s
√

1 − z2, so

I1 = 2
[ s∫

0

f(z)dz

s
√

1−z2∫

−z
√

1−s2

[
(1 − z2)s2 − η2

]− 1

2

(
η + z

√
1 − s2

)
dη+

s∫

0

f(z)dz

−z
√

1−s2∫

−s
√

1−z2

[
(1 − z2)s2 − η2

]− 1

2

(
−η − z

√
1 − s2

)
dη

]
.

This gives

I1 = 2
[ s∫

0

z
√

1 − s2f(z)dz

s
√

1−z2∫

−s
√

1−z2

[
(1 − z2)s2 − η2

]− 1

2 dη−
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−2

s∫

0

f(z)dz

−z
√

1−s2∫

−s
√

1−z2

[
(1 − z2)s2 − η2

]− 1

2 ηdη−

−2

s∫

0

z
√

1 − s2f(z)dz

−z
√

1−s2∫

−s
√

1−z2

[
(1 − z2)s2 − η2

]− 1

2 dη
]
.

Similarly, 1 ≥ z ≥ s implies s
√

1 − z2 ≤ z
√

1 − s2, so

I2 = 2

1∫

s

f(z)z
√

1 − s2dz

s
√

1−z2∫

−s
√

1−z2

[
(1 − z2)s2 − η2

]− 1

2 dη.

Now we have

ϕ(s) = I1 + I2 = 2
[ 1∫

0

z
√

1 − s2f(z)dz

s
√

1−z2∫

−s
√

1−z2

[
(1 − z2)s2 − η2

]− 1

2 dη−

−2

s∫

0

f(z)dz

−z
√

1−s2∫

−s
√

1−z2

[
(1 − z2)s2 − η2

]− 1

2 ηdη−

−2

s∫

0

z
√

1 − s2f(z)dz

−z
√

1−s2∫

−s
√

1−z2

[
(1 − z2)s2 − η2

]− 1

2 dη
]
.

In other words,

ϕ(s) = 4
[π

4

√
1 − s2

1∫

0

zf(z)dz +

∫ s

0

√
s2 − z2f(z)dz−

−
∫ s

0

z
√

1 − s2f(z) arccos
z
√

1 − s2

s
√

1 − z2
dz

]
.

We can simplify this formula, dividing both sides by
√

1 − s2 and taking
the derivative with respect to s ∈ (0, 1). We get

d

ds

(
ϕ(s)√
1 − s2

)
=

4

s(1 − s2)3/2

∫ s

0

√
s2 − z2f(z)dz.

We define

g(s) =
s(1 − s2)3/2

4

d

ds

(
ϕ(s)√
1 − s2

)
,
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to get the integral equation

g(s) =

∫ s

0

√
s2 − z2f(z)dz,

which can be inverted by standard methods, see for example ([H], p.
11, n = 4):

f(z) =
2

3

z∫

0

z(z2 − s2)−
1

2

(
g′(s)

s

)′
ds, 0 ≤ z ≤ 1.

Finally

f(z) =
1

6

z∫

0

z(z2 − s2)−
1

2

d

ds

(
1

s

d

ds

(
s(1 − s2)3/2 d

ds

(
ϕ(s)√
1 − s2

)))
ds.

2

The following result is well-known (see [Sc], p. 431, relation (A.16))
and [See]. We include it here for the convenience of the reader.

Lemma 4. The function

Vol2(K|·⊥) : u ∈ S2 → Vol2(K|u⊥)

belongs to C3(S2), provided fK ∈ C3(S2).

Proof : Let n ≥ 3, dn(m) = (n+2m−2)(n+m−3)!
m!(n−2)!

, and let

∞∑

m=1

dn(m)∑

µ=1

fm,µYm,µ(θ), fm,µ =

∫

Sn−1

f(σ)Ym,µ(σ)dσ,

be the Fourier-Laplace series of f ∈ L2(Sn−1). It is well-known (see
[See]), that f ∈ C2r(Sn−1) implies

|fm,µ| ≤ cm−2r, |DjYm(θ)| ≤ cm|j|+ n−2

2 ,

for all multi-indices j, |j| = j1 + ... + jn = 0, 1, 2, ...,

Dj =
∂ |j|

(∂x1)j1 ...(∂xn)jn

.

Let 2r > 3(n − 2)/2 + |j| + 1. It follows that the derivatives Dj of
the Fourier-Laplace series of f converge uniformly and absolutely to
Djf(θ). Indeed, dn(m) ∼ cmn−2 as m → ∞, and we have

|
∞∑

m=1

dn(m)∑

µ=1

fm,µDjYm,µ(θ)| ≤ C

∞∑

m=1

1

m2r−3/2(n−2)−|j| < ∞.
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Let fK ∈ C2r(Sn−1), 2r > |j| + n − 7/2. Then the Cauchy formula
and the Fourier-Laplace decomposition of the Cosine transform imply

DjVoln−1(K|θ⊥) = Dj
(1

2

∫

Sn−1

|θ · x|fK(x)dx
)

=

=
∞∑

m=1

dn(m)∑

µ=1

γm (fK)m,µ DjYm,µ(θ),

where γm ∼ cm−(3+n)/2 as m → ∞. Moreover,

|
∞∑

m=1

dn(m)∑

µ=1

γm (fK)m,µ DjYm,µ(θ)| ≤ C
∞∑

m=1

1

m2r−3/2(n−2)−|j|+(3+n)/2
< ∞.

Thus, the function Vol2(K|·⊥) : u ∈ S2 → Vol2(K|u⊥) is three times
continuously differentiable, provided fK ∈ C2r(S2), 2r ≥ 3.

2
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