SOME PROPERTIES OF CONJUGATE HARMONIC FUNCTIONS
IN A HALF-SPACE

ANATOLY RYABOGIN AND DMITRY RYABOGIN

ABSTRACT. We prove a multi-dimensional analog of the Theorem of Hardy and
Littlewood about the logarithmic bound of the LP- average of the conjugate har-
monic functions, 0 < p < 1. We also give sufficient conditions for a harmonic vector
to belong to HP(R'IT!), 0 <p < 1.

1. INTRODUCTION AND STATEMENTS OF MAIN RESULTS

The following result of Hardy and Littlewood [6] is classical.

Theorem 1. Let 0 < p < 1, and let f(z) = u(z) +iv(z) be an analytic function in
the unit disc D :={z € C: |z|] < 1}, such that

1 I 0 1/p

1) 1)o0)=0,  2) M(ru) = (_/ u(re)pe) <€, 0<r <1
2 Jo

Then

2 M, (rv) < AC + AC(1og —— )"

2) () < AC+ AC(log 7—) .

In this paper we prove an analog of Theorem 1 for conjugate harmonic functions
in R7" = R" x (0,00). The case p < (n —1)/n leads to additional difficulties, since
| F'|P is subharmonic, provided p > (n—1)/n, [15]. We refer the reader to the classical
works [3], [15], [17], [5], [2], [4], [18] for the history and different results related to the
classes SP(R™™), hP(RH), HP(R), (all definitions are given in Section 2).

We have

Theorem 2. Let 0 <p <1, and let F,

F(z,y) = (U(z,y), Vi(z,y), Va(,9), .., Val(z,y)),  (2,y) e RIT,
be the harmonic vector such that
(3) DVi=y 0, i=1,..,n, 2) My(y,U)<C,  3)M(1,F)<C.
Then
(4) M,(y, V) < AC + AC |logy|'/?.
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The third condition in (3) appears after the application of the Main Theorem of
calculus, see (8), (9). The logarithmic bound comes from the estimate

/Rn <sup’VU(x,§)]>pdx < ACHP

£t

/ P~ 1dt/ sup |VU (zx §)|>
n &>t
see Lemmata 3, 4, 5.

To control the logarithmic blow up, we use the ” Littlewood-Paley”- type condition:

/ = 1dt/ sup |VU (z §)|)pdx < 00.

>t

in the integral

Our second result is

Theorem 3. Let 0 < p <1, and let F = (U, V4, ..., V,,) be the harmonic vector such
that

(5) 1) F :>§_>OO 0, 2) My(1,F) <C, 3) I(p) < 0.
Then F € HP.

It is unlikely that F' € H? implies I(p) < oo.

The paper is organized as follows. In section 2 we give all necessary definitions and
auxiliary results used in the sequel. In Section 3 and 4 we prove Theorems 2 and 3.
For convenience of the reader we split our proofs into elementary Lemmata.

2. AUXILIARY RESULTS

Let U(z,y) be a harmonic function in R = R"™ x (0,00). We say that the
vector-function V(z,y) = (Vi(z,y),..., Va(x,y)) is the conjugate of U(z,y) in the
sense of M. Riesz [14], [16], if Vi(x,y), kK = 1,...,n are harmonic functions, satisfying
the generalized Cauchy-Riemann conditions:

oU ”é%_o v oV, oUu oV,
oy + p or, or,  Ox; ox; Oy’

ik k=1,...,n

If U(z,y) and V(z,y) are conjugate in R’™" in the above sense, then the vector-
function

F(z,y) = (U(z,y),V(x,y)) = (U(z,y), Vi(z,y), ... Va(2,y))
is called a harmonic vector.
Define

Mp(y,F):(/<U2xy ZVQxy)p/Q x)l/p, p > 0.

RTL
Now we define the space HP(R"). We follow the work of Fefferman and Stein[4].

Let U(z,y) be a harmonic function in R7*', and let Uy, j,;,. j, denote a component
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of a symmetric tensor of rank k, 0 < j; < n, 7= 1,...,n. Suppose also that the trace
of our tensor is zero, meaning

ZUjjj&--jk(xvy) =0, Vi3 e Tk

=0
The tensor of rank £+ 1 can be obtained from the above tensor of rank & by passing
to its gradient:

0 .
Ujrjawivinns (B Y) = 57— WUjijajsi (T:9), - @0 =y, 0 < jrra <
8xjk+1

Definition ([4]). We say that U € HP(R"™), p > 0, if there exists a tensor of rank
k of the above type with the properties:

Uo..o(z,y) = Ulx,y), sup/ (ZU(Qj)(x,y)>p/2dx < 00, () = (1, ---Jr)-

y>0
R (4)

p/2
It is well-known that the function (ZU&(J@,@;)) is subharmonic for p > p, =
@)

(n—k)/(n+k—1), see [3],[4],[16].
We remind that the radial and the non-tangential maximal functions are defined
as follows:

Fra) =sup|F(o,g)l,  Na(F)a®) = sup  |F(z,y)]
y>0 (z,y)€la(z)
Here
La(a®) = {(,y) R : fz =2 <ay}, >0,

is an infinite cone with the vertex at z°. It is well-known [4] that
Fe H(R'™) < N,(F)e L’ < F'eLl p>0.
We also define the weak maximal function
WE(z,y) =sup|F(z,¢)|,  y>0.

¢y
The above expression is understood as folows: we fix z, and for fixed y we find the
supremum over all ¢ > .
We will use the following results.

Lemma 1. ([4], p.173). Suppose w is harmonic in R, and M, (y,u) < C for some
p, 0 <p<oo. Then

(6) sup [u(z,y)| < Ay, 0<y< oo
zeR™

Theorem 4. ([5], p.267). Let 0 <p <1, a >0, let w: R} — [0,00) be a function
such that wP is subharmonic and satisfies

Jap = / tP L (2, t)Pdrdt < 400,

n+1
R+
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and for each (z,t) € R™ x [0, 400) let
+oo

wWe(z,t) = ﬁ / s*lw(z,s +t)ds.

Then w, is subharmonic on R’frl and is finite a.e. on R™, and for allt > 0,

/w(x,t)p dr < AC(a,n,p) Jop-

Rn
Theorem 5. ([5], p.269). Let m € N, p > (n—1)/(m+n—1) (if n =1 we suppose
p>0), and let u : Ri“ — R be harmonic. Then, for all t > 0,

3t/2
/|Vmu(x,t)|pdx§A(m,n,p)tmp1 / ds/]u(:c,s)]pda:.
R" t/2  R»

Lemma 2. ([13], p.2464). Letp > 0 and let F' = (U, V1, ..., V,,) be such that V; =
0,i=1,...,n, My(y,U) <C. Then

M,(y, VFF) < ACy™*, ke N.

Notation. We denote by D¥f(x,y) the partial derivative of the function f of
the order k& with respect to x;, i = 1,2,...,n + 1. The notation f(z,y) =5 . 0
means that f(z,y) converges to 0 uniformly with respect to z, provided y — o0,

VEf(x) = (akf(x) : 8kf(gc)). Everywhere below the constants A(k,n),C, K depend

oxf 7t Oxk
only on the parameters pointed in parentheses, and may be different from time to
time.

3. PROOF OF THEOREM 2.

Lemma 3. Let p > 0, and let F' = (U, V1, ..., V,,) satisfy M,(1,F) < C. Then

w>A@wwagAc+/;(Llw

&t

VU(m,f)‘dt)pdx, i=0.1,..n Vo=U.

Proof. By the Main Theorem of Calculus, and the Cauchy-Riemann equations, we
have

LoVi(z,t) LoU (x,t)
(8) Vi(z,y) = Vi(z,1) = —/y Tdt = —/y Dz, dt,
1=1,2,...,n,
1
) Utey) - Uy = - [
” ot
Then,

1
My(y, Vi) SMp(l,V;H/ (/ sup
n y

£t
and the result follows. OJ

VU(z, 5)‘dt>pdx,
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Lemma 4. Let p > 0 and let 0 <y < 1. Then
1
/ (/ sup|VU(a:,§)|dt)pdx <
n Ny £t

(10) y? / (sup|VU(:B £)| d:v + 2p/ = 1dt/n sup |VU (x §)|>

&2y &>t

Proof. Denote
1
Uay) = [ sup VU, O]dr
y

£t
Following [6] consider

Cb(l’,y) = \Ij(xny)p - yp< -

By definition of (y),

(11) / U(z,y)Pde < yP / (— M>pdx.
R™\Q() R"\O() 9y

Next, the reasons which are similar to those in [6], imply

a )
(12) / O(z,y)dx —/ O(z,a)dr = / dé _ 9%, ¢) dr, 0 <y<a<l.
a(y) Q(a) vy Jag 0

Moreover, using 9?W/9€? > 0 for almost every 0 < £ < 1, we have

0P ow oW\ OUN\P-10?W
T _ gyl p=1( _ 7~ _ p( _ 2~ <«
e =V e e (- 5) e (- %) G s
ov [OA AN A AN
p—1 p—1( _ 7= p—1( 7=
p(- ag)(‘y rer!( ag) ) < 2e7( ag)'
Here the last inequality follows from the definition of (§) and 0 < p < 1. Since

U(z,y) < (1-y) ‘_a\pg; y)

the function ®(z,y) is negative, provided y is sufficiently close to 1, and we can take
a such that Q(a) = 0. Hence, (12) yields

/g(y) Pl e = 20 /ya e /ﬂ(g) (- %(w,f))pdx <

(13) 2 | et (- aq’éﬁ’%,@)pdw

v
/ U(z,y)Pde < / O(z,y)dr + y* / (— MYdm
) () () 0y
with (11), and using (13), we obtain (10). O

M)p, Q(y) == {r €R": B(z,y) > 0}.

dy

Y

Adding
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The next result is crucial.

Lemma 5. Let p > 0 and let F = (U, V4, ..., V,,) be such that

(14) 1) V; :>ZHOO 0, 1=1,...,n, 2) M,(y,U) <C.
Then
P 1/p
(15) ([ (swptonol)'ar)” < acy™,
R™ &>y

where ¢;;(z,y) is a coordinate of VVi(x,y), j=1,..,n+1, xyp1 =y, i =0,...,n,
VWw=U.

Proof. Fix p > 0 and let [ = inf{j e N: p > p; := (n —1)/(j +n — 1)}. Since
VVi(r,y) =5 . 0, we may use the following relation (see [5] or [4])

(e e

1 _ _
0ua) = gy [ (6= 0 DR by ) =
y
1 20-2 1y2l—1
m S Dn+l (bij(a;,s—i-y)ds.
0
We have
sSup |¢ij(xa €)| < R(‘Ta y)?
2y
where
R(x,y) = 1 321_2<su (V! DL (e, s —i—f)’)ds
W= =) oy | 1P '
J >
To prove (15) it is enough to show that
16 M,(y,R) < AC'y .
P

Since
1pl-1 P
(IV' Dl 6. €)1)
is subharmonic [3], the function
p
w(z, 5 +y) = ((up VDI oy (w, s + €)1
&2y

is also subharmonic, and we may apply Theorem 4 (take a = 2l — 1, A = A(l,n,p))

to obtain
o0

/ |R(z,y)[Pde < A / sr=ls / <?>1p V' D, i, s + §>|)pdx =
R~ 0 R =Y
T p/pj
A/s(zl_l)p_lds/ (sup|VlDﬁ;11gbij($,s+f)|pj> dr.
£y

0 R"
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By the choice of p;, we have p/p; > 1 and we may use the well-known [4] LP/Pi-
boundedness of the maximal operator:

/]Rx Y |”dx<A/ (21=1)p— lals/|VDnJrl ii(z, s +y)[Pdw.

Since D! -l ¢ij(2,y) is the [-th derivative of V;, we use Lemma 2 to get
(17) / VDl )P < / V(@ y)Pde < Cy,
This gives

/ |R(z,y)|Pdz < A(, n,p)0/8(2”)p1(8 +y)"Pds = A(l,n,p)Cy?,
R" 0

and (16) is proved. O
Proof of Theorem 2. The proof follows from Lemmata 3, 4, 5.

4. PROOF OF THEOREM 3.
Lemma 6. Letp > 0. Then F = (U, V4,...,V,,) € HP iff

) F=, .0, 2) /(sup|U(x,77)|>pdx < C.
o n2y

Proof. Let F' € HP, then both 1) and 2) are well-known, [4]. We prove the converse
in two steps. At first we show that

(18) / (sup |U($,y)|>pdx <C.

y>0
Rn

Then we prove that (18) implies
(19) (sup [Vi(-,p)l)” € LR, i=1,m.

y>0
To prove (18), we observe that
sup |U(z, y)| = supsup |[U(,n)| = lim sup |U(z,7)].
y>0 y>0 n>y -0 n>y
Hence, using 2) and Fatou’s Lemma, we obtain

/(sup|U(.21: y)| da; < hm/ sup |U(x,n) ])pdx < C.

y>0 n2y

R”

It remains to show (19). Using Cauchy-Riemann equations, we have

Vi) = Wlo.ale0) = sy [ DhaaVitos + s =
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—1)* 7
(20) (/i—)l)'/ FIDF DU (2, s + y)ds,
0

/2
where k is chosen such that the function <Z U? ) (m y))p is subharmonic, (p > py =
()
(n—k)/(n+k—1), see [3],[4],[16]). Since the expression in (20) is one of the tensor

coordinates of U(;y, see ([4], page 169), we have

/(zgg!%(fc,y)\)pdx < /(supZU ) )m doe =

Rn
/(ZU p d <0/ U y)pd
su x x su x
y>18 (j y y>13 y
The last estimate is proved in [4], page 170. d

Lemma 7. Let p > 0 and let F' = (U, Vi, ..., V,,) be such that V; =5 0,i=1,..,n.
Then F' € HP, provided

Proof. At first we prove that

(22) 2_p/ (Sup|Vi(a:,y)|>pdm < AC+/ (sup|VU(x,y)|)pd$, VG C R".

y>0 y>0
G G

This follows from (8), (9) the inequality
P P P
277 (sup Vi, p)l) < (I, 1)I) + (sup VU2, 9)])

y>0 y>0

j=0,1,2,...,n,Vy = U, and the first condition in (21).
Now we finish the proof. Assume that the lemma is not true. Then VN > 0 there
exists a set £ C R", 0 < m(FE) < oo, such that

p
[ (suwlvie)) o= ax.
y>0
B
for some i = 0,1,....,n, Vy = U. Hence, taking G = E in (22) we have

/(sup]VU(x,y)\) dx > 2N.
y>0
E
Then
sup |VU(z,y)| = supsup |VU(z,§)| = hm sup |VU(z,§)|
Oe>y

y>0 y>0 &>y
and Lemma Fatou imply

lim <sup]VU(x,f)]>pdx2/(sup|VU(x,y)|>pd;E22N.
y—=0 &2y 7 y>0
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But this contradicts the third condition of the lemma, since

1
)Z/ dy/ (sup|VU(x,f dx>/ dy/ sup|VUm§)|>pdmZN.
0 noN €2y £y
0

Lemma 8. Let p > 0 and let F = (U, V4, ..., V,,) be the harmonic vector satisfying
conditions of Theorem 3. Then (18) holds.

Proof. We argue as in the previous Lemma. We have (9), and

2_p/<§§§ U(x,y)‘)pdxg/‘U(m,l)‘pdx—l—/(iglg\VU(I,yﬂ)pdx

Rn Rn Rn
leads to a contradiction. O

Proof of Theorem 3. The proof follows from Lemmata 8, 7 and 6.
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