
SOME PROPERTIES OF CONJUGATE HARMONIC FUNCTIONS
IN A HALF-SPACE

ANATOLY RYABOGIN AND DMITRY RYABOGIN

Abstract. We prove a multi-dimensional analog of the Theorem of Hardy and
Littlewood about the logarithmic bound of the Lp- average of the conjugate har-
monic functions, 0 < p ≤ 1. We also give sufficient conditions for a harmonic vector
to belong to Hp(Rn+1

+ ), 0 < p ≤ 1.

1. Introduction and statements of main results

The following result of Hardy and Littlewood [6] is classical.

Theorem 1. Let 0 < p ≤ 1, and let f(z) = u(z) + iv(z) be an analytic function in
the unit disc D := {z ∈ C : |z| < 1}, such that

(1) 1) v(0) = 0, 2) Mp(r, u) :=
( 1

2π

∫ 2π

0

|u(reiθ)|pdθ
)1/p

≤ C, 0 ≤ r < 1.

Then

(2) Mp(r, v) ≤ AC + AC
(

log
1

1− r

)1/p

.

In this paper we prove an analog of Theorem 1 for conjugate harmonic functions
in Rn+1

+ = Rn × (0,∞). The case p < (n− 1)/n leads to additional difficulties, since
|F |p is subharmonic, provided p ≥ (n−1)/n, [15]. We refer the reader to the classical
works [3], [15], [17], [5], [2], [4], [18] for the history and different results related to the
classes Sp(Rn+1

+ ), hp(Rn+1
+ ), Hp(Rn+1

+ ), (all definitions are given in Section 2).
We have

Theorem 2. Let 0 < p ≤ 1, and let F ,

F (x, y) = (U(x, y), V1(x, y), V2(x, y), ..., Vn(x, y)), (x, y) ∈ Rn+1
+ ,

be the harmonic vector such that

(3) 1) Vi ⇒x
y→∞ 0, i = 1, ..., n, 2) Mp(y, U) ≤ C, 3) Mp(1, F ) ≤ C.

Then

(4) Mp(y, V ) ≤ AC + AC | log y|1/p.
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The third condition in (3) appears after the application of the Main Theorem of
calculus, see (8), (9). The logarithmic bound comes from the estimate∫

Rn

(
sup
ξ≥t

|∇U(x, ξ)|
)p

dx ≤ ACt−p

in the integral ∫ 1

y

tp−1dt

∫

Rn

(
sup
ξ≥t

|∇U(x, ξ)|
)p

dx,

see Lemmata 3, 4, 5.
To control the logarithmic blow up, we use the ”Littlewood-Paley”- type condition:

I(p) :=

∫ 1

0

tp−1dt

∫

Rn

(
sup
ξ≥t

|∇U(x, ξ)|
)p

dx < ∞.

Our second result is

Theorem 3. Let 0 < p ≤ 1, and let F = (U, V1, ..., Vn) be the harmonic vector such
that

(5) 1) F ⇒x
y→∞ 0, 2) Mp(1, F ) ≤ C, 3) I(p) < ∞.

Then F ∈ Hp.

It is unlikely that F ∈ Hp implies I(p) < ∞.
The paper is organized as follows. In section 2 we give all necessary definitions and

auxiliary results used in the sequel. In Section 3 and 4 we prove Theorems 2 and 3.
For convenience of the reader we split our proofs into elementary Lemmata.

2. Auxiliary results

Let U(x, y) be a harmonic function in Rn+1
+ ≡ Rn × (0,∞). We say that the

vector-function V (x, y) = (V1(x, y), ..., Vn(x, y)) is the conjugate of U(x, y) in the
sense of M. Riesz [14], [16], if Vk(x, y), k = 1, ..., n are harmonic functions, satisfying
the generalized Cauchy-Riemann conditions:

∂U

∂y
+

n∑

k=1

∂Vk

∂xk

= 0,
∂Vi

∂xk

=
∂Vk

∂xi

,
∂U

∂xi

=
∂Vi

∂y
, i 6= k, k = 1, ..., n.

If U(x, y) and V (x, y) are conjugate in Rn+1
+ in the above sense, then the vector-

function

F (x, y) = (U(x, y), V (x, y)) = (U(x, y), V1(x, y), ..., Vn(x, y))

is called a harmonic vector.
Define

Mp(y, F ) =
( ∫

Rn

(
U2(x, y) +

n∑
i=1

V 2
i (x, y)

)p/2

dx
)1/p

, p > 0.

Now we define the space Hp(Rn+1
+ ). We follow the work of Fefferman and Stein[4].

Let U(x, y) be a harmonic function in Rn+1
+ , and let Uj1j2j3...jk

denote a component
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of a symmetric tensor of rank k, 0 ≤ ji ≤ n, i = 1, ..., n. Suppose also that the trace
of our tensor is zero, meaning

n∑
j=0

Ujjj3...jk
(x, y) = 0, ∀j3, ..., jk.

The tensor of rank k + 1 can be obtained from the above tensor of rank k by passing
to its gradient:

Uj1j2...jkjk+1
(x, y) =

∂

∂xjk+1

(Uj1j2j3...jk
(x, y)), x0 = y, 0 ≤ jk+1 ≤ n.

Definition ([4]).We say that U ∈ Hp(Rn+1
+ ), p > 0, if there exists a tensor of rank

k of the above type with the properties:

U0...0(x, y) = U(x, y), sup
y>0

∫

Rn

( ∑

(j)

U2
(j)(x, y)

)p/2

dx < ∞, (j) = (j1, ...jk).

It is well-known that the function
( ∑

(j)

U2
(j)(x, y)

)p/2

is subharmonic for p ≥ pk =

(n− k)/(n + k − 1), see [3],[4],[16].
We remind that the radial and the non-tangential maximal functions are defined

as follows:

F+(x) = sup
y>0

|F (x, y)|, Nα(F )(x0) = sup
(x,y)∈Γα(x0)

|F (x, y)|.

Here
Γα(x0) = {(x, y) ∈ Rn+1

+ : |x− x0| < αy}, α > 0,

is an infinite cone with the vertex at x0. It is well-known [4] that

F ∈ Hp(Rn+1
+ ) ⇐⇒ Nα(F ) ∈ Lp ⇐⇒ F+ ∈ Lp, p > 0.

We also define the weak maximal function

WF (x, y) = sup
ζ≥y

|F (x, ζ)|, y > 0.

The above expression is understood as folows: we fix x, and for fixed y we find the
supremum over all ζ ≥ y.

We will use the following results.

Lemma 1. ([4], p.173). Suppose w is harmonic in Rn+1
+ , and Mp(y, u) ≤ C for some

p, 0 < p < ∞. Then

(6) sup
x∈Rn

|u(x, y)| ≤ Ay−n/p, 0 < y < ∞.

Theorem 4. ([5], p.267). Let 0 < p ≤ 1, a > 0, let w : Rn+1
+ → [0,∞) be a function

such that wp is subharmonic and satisfies

Ja,p :=

∫

Rn+1
+

tap−1w(x, t)pdxdt < +∞,
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and for each (x, t) ∈ Rn × [0, +∞) let

wa(x, t) :=
1

Γ(a)

+∞∫

0

sa−1w(x, s + t) ds.

Then wa is subharmonic on Rn+1
+ and is finite a.e. on Rn, and for all t ≥ 0,∫

Rn

w(x, t)p dx ≤ AC(a, n, p) Ja,p.

Theorem 5. ([5], p.269). Let m ∈ N, p ≥ (n− 1)/(m + n− 1) (if n = 1 we suppose
p > 0), and let u : Rn+1

+ → R be harmonic. Then, for all t > 0,

∫

Rn

|∇mu(x, t)|pdx ≤ A(m,n, p)t−mp−1

3t/2∫

t/2

ds

∫

Rn

|u(x, s)|pdx.

Lemma 2. ([13], p.2464). Let p > 0 and let F = (U, V1, ..., Vn) be such that Vi ⇒x
y→∞

0, i = 1, ..., n, Mp(y, U) ≤ C. Then

Mp(y,∇kF ) ≤ ACy−k, k ∈ N.

Notation. We denote by Dk
i f(x, y) the partial derivative of the function f of

the order k with respect to xi, i = 1, 2, ..., n + 1. The notation f(x, y) ⇒x
y→∞ 0

means that f(x, y) converges to 0 uniformly with respect to x, provided y → ∞,

∇kf(x) = (∂kf(x)

∂xk
1

, ..., ∂kf(x)
∂xk

n
). Everywhere below the constants A(k, n), C,K depend

only on the parameters pointed in parentheses, and may be different from time to
time.

3. Proof of Theorem 2.

Lemma 3. Let p > 0, and let F = (U, V1, ..., Vn) satisfy Mp(1, F ) ≤ C. Then

(7) Mp(y, Vi) ≤ AC +

∫

Rn

( ∫ 1

y

sup
ξ≥t

∣∣∣∇U(x, ξ)
∣∣∣dt

)p

dx, i = 0, 1, ..., n, V0 = U.

Proof. By the Main Theorem of Calculus, and the Cauchy-Riemann equations, we
have

(8) Vi(x, y)− Vi(x, 1) = −
∫ 1

y

∂Vi(x, t)

∂t
dt = −

∫ 1

y

∂U(x, t)

∂xi

dt,

i = 1, 2, ..., n,

(9) U(x, y)− U(x, 1) = −
∫ 1

y

∂U(x, t)

∂t
dt.

Then,

Mp(y, Vi) ≤ Mp(1, Vi) +

∫

Rn

( ∫ 1

y

sup
ξ≥t

∣∣∣∇U(x, ξ)
∣∣∣dt

)p

dx,

and the result follows. ¤
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Lemma 4. Let p > 0 and let 0 < y < 1. Then
∫

Rn

( ∫ 1

y

sup
ξ≥t

|∇U(x, ξ)| dt
)p

dx ≤

(10) yp

∫

Rn

(
sup
ξ≥y

|∇U(x, ξ)|
)p

dx + 2 p

∫ 1

y

tp−1dt

∫

Rn

(
sup
ξ≥t

|∇U(x, ξ)|
)p

dx.

Proof. Denote

Ψ(x, y) :=

∫ 1

y

sup
ξ≥t

|∇U(x, ξ)| dt.

Following [6] consider

Φ(x, y) := Ψ(x, y)p − yp
(
− ∂Ψ(x, y)

∂y

)p

, Ω(y) := {x ∈ Rn : Φ(x, y) > 0}.

By definition of Ω(y),

(11)

∫

Rn\Ω(y)

Ψ(x, y)pdx ≤ yp

∫

Rn\Ω(y)

(
− ∂Ψ(x, y)

∂y

)p

dx.

Next, the reasons which are similar to those in [6], imply

(12)

∫

Ω(y)

Φ(x, y) dx−
∫

Ω(a)

Φ(x, a) dx =

∫ a

y

dξ

∫

Ω(ξ)

−∂Φ(x, ξ)

∂ξ
dx, 0 < y < a ≤ 1.

Moreover, using ∂2Ψ/∂ξ2 ≥ 0 for almost every 0 < ξ < 1, we have

−∂Φ

∂ξ
= −p Ψp−1∂Ψ

∂ξ
+ p ξp−1

(
− ∂Ψ

∂ξ

)p

− p ξp
(
− ∂Ψ

∂ξ

)p−1∂2Ψ

∂ξ2
≤

p
(
− ∂Ψ

∂ξ

)(
Ψp−1 + ξp−1

(
− ∂Ψ

∂ξ

)p−1)
≤ 2p ξp−1

(
− ∂Ψ

∂ξ

)p

.

Here the last inequality follows from the definition of Ω(ξ) and 0 < p < 1. Since

Ψ(x, y) ≤ (1− y)
∣∣∣∂Ψ(x, y)

∂y

∣∣∣,

the function Φ(x, y) is negative, provided y is sufficiently close to 1, and we can take
a such that Ω(a) = ∅. Hence, (12) yields

∫

Ω(y)

Φ(x, y) dx ≤ 2p

∫ a

y

ξp−1 dξ

∫

Ω(ξ)

(
− ∂Ψ(x, ξ)

∂ξ
(x, ξ)

)p

dx ≤

(13) 2p

∫ 1

y

ξp−1 dξ

∫

Rn

(
− ∂Ψ(x, ξ)

∂ξ
(x, ξ)

)p

dx.

Adding ∫

Ω(y)

Ψ(x, y)p dx ≤
∫

Ω(y)

Φ(x, y) dx + yp

∫

Ω(y)

(
− ∂Ψ(x, y)

∂y

)p

dx

with (11), and using (13), we obtain (10). ¤
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The next result is crucial.

Lemma 5. Let p > 0 and let F = (U, V1, ..., Vn) be such that

(14) 1) Vi ⇒x
y→∞ 0, i = 1, ..., n, 2) Mp(y, U) ≤ C.

Then

(15)
( ∫

Rn

(
sup
ξ≥y

|φij(x, ξ)|
)p

dx
)1/p

≤ ACy−1,

where φij(x, y) is a coordinate of ∇Vi(x, y), j = 1, ..., n + 1, xn+1 = y, i = 0, ..., n,
V0 = U .

Proof. Fix p > 0 and let l = inf{j ∈ N : p > pj := (n − 1)/(j + n − 1)}. Since
∇Vi(x, y) ⇒x

y→∞ 0, we may use the following relation (see [5] or [4])

φij(x, y) =
1

(2l − 2)!

∞∫

y

(s− y)2l−2D2l−1
n+1 φij(x, s)ds =

1

(2l − 2)!

∞∫

0

s2l−2D2l−1
n+1 φij(x, s + y)ds.

We have
sup
ξ≥y

|φij(x, ξ)| ≤ R(x, y),

where

R(x, y) :=
1

(2l − 2)!

∞∫

0

s2l−2
(

sup
ξ≥y

|∇lDl−1
n+1φij(x, s + ξ)|

)
ds.

To prove (15) it is enough to show that

(16) Mp(y,R) ≤ AC y−1.

Since (
|∇lDl−1

n+1φij(x, ξ)|
)p

is subharmonic [3], the function

wp(x, s + y) :=
(

sup
ξ≥y

|∇lDl−1
n+1φij(x, s + ξ)|

)p

is also subharmonic, and we may apply Theorem 4 (take a = 2l − 1, A = A(l, n, p))
to obtain

∫

Rn

|R(x, y)|pdx ≤ A

∞∫

0

s(2l−1)p−1ds

∫

Rn

(
sup
ξ≥y

|∇lDl−1
n+1φij(x, s + ξ)|

)p

dx =

A

∞∫

0

s(2l−1)p−1ds

∫

Rn

(
sup
ξ≥y

|∇lDl−1
n+1φij(x, s + ξ)|pj

)p/pj

dx.
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By the choice of pj, we have p/pj > 1 and we may use the well-known [4] Lp/pj -
boundedness of the maximal operator:

∫

Rn

|R(x, y)|pdx ≤ A

∞∫

0

s(2l−1)p−1ds

∫

Rn

|∇lDl−1
n+1φij(x, s + y)|pdx.

Since Dl−1
n+1φij(x, y) is the l-th derivative of Vi, we use Lemma 2 to get

(17)

∫

Rn

|∇lDl−1
n+1φij(x, y)|pdx ≤

∫

Rn

|∇2lF (x, y)|pdx ≤ C y−2lp.

This gives

∫

Rn

|R(x, y)|pdx ≤ A(l, n, p)C

∞∫

0

s(2l−1)p−1(s + y)−2lpds = A(l, n, p)Cy−p,

and (16) is proved. ¤
Proof of Theorem 2. The proof follows from Lemmata 3, 4, 5.

4. Proof of Theorem 3.

Lemma 6. Let p > 0. Then F = (U, V1, ..., Vn) ∈ Hp iff

1) F ⇒x
y→∞ 0, 2)

∫

Rn

(
sup
η≥y

|U(x, η)|
)p

dx < C.

Proof. Let F ∈ Hp, then both 1) and 2) are well-known, [4]. We prove the converse
in two steps. At first we show that

(18)

∫

Rn

(
sup
y>0

|U(x, y)|
)p

dx ≤ C.

Then we prove that (18) implies

(19) (sup
y>0

|Vi(·, y)|)p ∈ L1(Rn), i = 1, ..., n.

To prove (18), we observe that

sup
y>0

|U(x, y)| = sup
y>0

sup
η≥y

|U(x, η)| = lim
y→0

sup
η≥y

|U(x, η)|.

Hence, using 2) and Fatou’s Lemma, we obtain∫

Rn

(
sup
y>0

|U(x, y)|
)p

dx ≤ lim
y→0

∫

Rn

(
sup
η≥y

|U(x, η)|
)p

dx ≤ C.

It remains to show (19). Using Cauchy-Riemann equations, we have

Vi(x, y) = [Vi]0...0(x, y) =
(−1)k

(k − 1)!

∞∫

0

sk−1Dk
n+1Vi(x, s + y)ds =
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(20)
(−1)k

(k − 1)!

∞∫

0

sk−1Dk−1
n+1DiU(x, s + y)ds,

where k is chosen such that the function
( ∑

(j)

U2
(j)(x, y)

)p/2

is subharmonic, (p ≥ pk =

(n− k)/(n + k − 1), see [3],[4],[16]). Since the expression in (20) is one of the tensor
coordinates of U(j), see ([4], page 169), we have

∫

Rn

(
sup
y>0

|Vi(x, y)|
)p

dx ≤
∫

Rn

(
sup
y>0

∑

(j)

U2
(j)(x, y)

)p/2

dx =

sup
y>0

∫

Rn

( ∑

(j)

U2
(j)(x, y)

)p/2

dx ≤ C

∫

Rn

(
sup
y>0

|U(x, y)|
)p

dx.

The last estimate is proved in [4], page 170. ¤
Lemma 7. Let p > 0 and let F = (U, V1, ..., Vn) be such that Vi ⇒x

y→∞ 0, i = 1, ..., n.
Then F ∈ Hp, provided

(21) 1) Mp(1, F ) ≤ C, 2) Mp(y, U) ≤ C, 3) I(p) < ∞.

Proof. At first we prove that

(22) 2−p

∫

G

(
sup
y>0

|Vi(x, y)|
)p

dx ≤ AC +

∫

G

(
sup
y>0

|∇U(x, y)|
)p

dx, ∀G ⊂ Rn.

This follows from (8), (9) the inequality

2−p
(

sup
y>0

|Vi(x, y)|
)p

≤
(
|Vi(x, 1)|

)p

+
(

sup
y>0

|∇U(x, y)|
)p

,

j = 0, 1, 2, ..., n, V0 = U , and the first condition in (21).
Now we finish the proof. Assume that the lemma is not true. Then ∀N > 0 there

exists a set E ⊂ Rn, 0 < m(E) < ∞, such that∫

E

(
sup
y>0

|Vi(x, y)|
)p

dx ≥ 4N,

for some i = 0, 1, ..., n, V0 = U . Hence, taking G = E in (22) we have∫

E

(
sup
y>0

|∇U(x, y)|
)p

dx ≥ 2N.

Then
sup
y>0

|∇U(x, y)| = sup
y>0

sup
ξ≥y

|∇U(x, ξ)| = lim
y→0

sup
ξ≥y

|∇U(x, ξ)|
and Lemma Fatou imply

lim
y→0

∫

E

(
sup
ξ≥y

|∇U(x, ξ)|
)p

dx ≥
∫

E

(
sup
y>0

|∇U(x, y)|
)p

dx ≥ 2N.
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But this contradicts the third condition of the lemma, since

I(p) ≥
∫ 1

0

dy

∫

Rn

(
sup
ξ≥y

|∇U(x, ξ)|
)p

dx ≥
∫ 1

0

dy

∫

E

(
sup
ξ≥y

|∇U(x, ξ)|
)p

dx ≥ N.

¤
Lemma 8. Let p > 0 and let F = (U, V1, ..., Vn) be the harmonic vector satisfying
conditions of Theorem 3. Then (18) holds.

Proof. We argue as in the previous Lemma. We have (9), and

2−p

∫

Rn

(
sup
y>0

∣∣∣U(x, y)
∣∣∣
)p

dx ≤
∫

Rn

∣∣∣U(x, 1)
∣∣∣
p

dx +

∫

Rn

(
sup
y>0

|∇U(x, y)|
)p

dx

leads to a contradiction. ¤
Proof of Theorem 3. The proof follows from Lemmata 8, 7 and 6.
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