SOME PROPERTIES OF CONJUGATE HARMONIC FUNCTIONS IN A HALF-SPACE

ANATOLY RYABOGIN AND DMITRY RYABOGIN

Abstract. We prove a multi-dimensional analog of the Theorem of Hardy and Littlewood about the logarithmic bound of the L^p-average of the conjugate harmonic functions, $0 < p \leq 1$. We also give sufficient conditions for a harmonic vector to belong to $H^p(R^{n+1}_+)$, $0 < p \leq 1$.

1. Introduction and statements of main results

The following result of Hardy and Littlewood [6] is classical.

Theorem 1. Let $0 < p \leq 1$, and let $f(z) = u(z) + iv(z)$ be an analytic function in the unit disc $D := \{z \in \mathbb{C} : |z| < 1\}$, such that

$$1) \quad v(0) = 0,$$

$$2) \quad M_p(r, u) := \left(\frac{1}{2\pi} \int_0^{2\pi} |u(re^{i\theta}|^p \, d\theta\right)^{1/p} \leq C, \quad 0 \leq r < 1.$$

Then

$$M_p(r, v) \leq AC + AC \left(\log \frac{1}{1 - r}\right)^{1/p}.$$

In this paper we prove an analog of Theorem 1 for conjugate harmonic functions in $\mathbb{R}^{n+1}_+ = \mathbb{R}^n \times (0, \infty)$. The case $p < (n - 1)/n$ leads to additional difficulties, since $|F|^p$ is subharmonic, provided $p \geq (n - 1)/n$, [15]. We refer the reader to the classical works [3], [15], [17], [5], [2], [4], [18] for the history and different results related to the classes $S^p(\mathbb{R}^{n+1}_+), h^p(\mathbb{R}^{n+1}_+), H^p(\mathbb{R}^{n+1}_+)$, (all definitions are given in Section 2).

We have

Theorem 2. Let $0 < p \leq 1$, and let F,

$$F(x, y) = (U(x, y), V_1(x, y), V_2(x, y), \ldots, V_n(x, y)), \quad (x, y) \in \mathbb{R}^{n+1}_+,$$

be the harmonic vector such that

$$1) \quad V_i \Rightarrow_{y \to \infty}^x 0, \quad i = 1, \ldots, n, \quad 2) \quad M_p(y, U) \leq C, \quad 3) \quad M_p(1, F) \leq C.$$

Then

$$M_p(y, V) \leq AC + AC |\log y|^{1/p}.$$
The third condition in (3) appears after the application of the Main Theorem of calculus, see (8), (9). The logarithmic bound comes from the estimate
\[\int_{\mathbb{R}^n} \left(\sup_{\xi \geq t} |\nabla U(x, \xi)| \right)^p \, dx \leq ACt^{-p} \]
in the integral
\[\int_0^1 t^{p-1} dt \int_{\mathbb{R}^n} \left(\sup_{\xi \geq t} |\nabla U(x, \xi)| \right)^p \, dx, \]
see Lemmata 3, 4, 5.

To control the logarithmic blow up, we use the "Littlewood-Paley"-type condition:
\[I(p) := \int_0^1 t^{p-1} dt \int_{\mathbb{R}^n} \left(\sup_{\xi \geq t} |\nabla U(x, \xi)| \right)^p \, dx < \infty. \]

Our second result is

Theorem 3. Let \(0 < p \leq 1\), and let \(F = (U, V_1, ..., V_n)\) be the harmonic vector such that
(5) 1) \(F \rightarrow \xi \rightarrow \infty 0\), 2) \(M_p(1, F) \leq C\), 3) \(I(p) < \infty\).

Then \(F \in H^p\).

It is unlikely that \(F \in H^p\) implies \(I(p) < \infty\).

The paper is organized as follows. In section 2 we give all necessary definitions and auxiliary results used in the sequel. In Section 3 and 4 we prove Theorems 2 and 3. For convenience of the reader we split our proofs into elementary Lemmata.

2. Auxiliary results

Let \(U(x, y)\) be a harmonic function in \(\mathbb{R}_{++}^{n+1} = \mathbb{R}^n \times (0, \infty)\). We say that the vector-function \(V(x, y) = (V_1(x, y), ..., V_n(x, y))\) is the conjugate of \(U(x, y)\) in the sense of M. Riesz [14], [16], if \(V_k(x, y), k = 1, ..., n\) are harmonic functions, satisfying the generalized Cauchy-Riemann conditions:
\[\frac{\partial U}{\partial y} + \sum_{k=1}^n \frac{\partial V_k}{\partial x_k} = 0, \quad \frac{\partial V_i}{\partial x_k} = \frac{\partial V_k}{\partial x_i}, \quad \frac{\partial U}{\partial x_i} = \frac{\partial V_i}{\partial y}, \quad i \neq k, \ k = 1, ..., n. \]

If \(U(x, y)\) and \(V(x, y)\) are conjugate in \(\mathbb{R}_{++}^{n+1}\) in the above sense, then the vector-function
\[F(x, y) = (U(x, y), V(x, y)) = (U(x, y), V_1(x, y), ..., V_n(x, y)) \]
is called a harmonic vector.

Define
\[M_p(y, F) = \left(\int_{\mathbb{R}^n} \left(U^2(x, y) + \sum_{i=1}^n V_i^2(x, y) \right)^{p/2} \, dx \right)^{1/p}, \quad p > 0. \]

Now we define the space \(H^p(\mathbb{R}_{++}^{n+1})\). We follow the work of Fefferman and Stein[4]. Let \(U(x, y)\) be a harmonic function in \(\mathbb{R}_{++}^{n+1}\), and let \(U_{j_1j_2j_3...j_k}\) denote a component
of a symmetric tensor of rank \(k \), \(0 \leq j_i \leq n \), \(i = 1, ..., n \). Suppose also that the trace of our tensor is zero, meaning
\[
\sum_{j=0}^{n} U_{j j_3 ... j_k} (x, y) = 0, \quad \forall j_3, ..., j_k.
\]
The tensor of rank \(k + 1 \) can be obtained from the above tensor of rank \(k \) by passing to its gradient:
\[
U_{j_1 j_2 ... j_k j_{k+1}} (x, y) = \frac{\partial}{\partial x_{j_{k+1}}} (U_{j_1 j_2 j_3 ... j_k} (x, y)), \quad x_0 = y, \quad 0 \leq j_{k+1} \leq n.
\]

Definition ([4]). We say that \(U \in H^p(\mathbb{R}_{+}^{n+1}), p > 0 \), if there exists a tensor of rank \(k \) of the above type with the properties:
\[
U_{0 ... 0} (x, y) = U (x, y), \quad \sup_{y > 0} \int_{\mathbb{R}^n} \left(\sum_{(j)} U_{j}^2 (x, y) \right)^{p/2} dx < \infty, \quad (j) = (j_1, ..., j_k).
\]

It is well-known that the function \(\left(\sum_{(j)} U_{j}^2 (x, y) \right)^{p/2} \) is subharmonic for \(p \geq p_k = (n - k)/(n + k - 1) \), see [3], [4], [16].

We remind that the radial and the non-tangential maximal functions are defined as follows:
\[
F^+ (x) = \sup_{y > 0} |F (x, y)|, \quad N_{\alpha} (F) (x^0) = \sup_{(x,y) \in \Gamma_{\alpha} (x^0)} |F (x, y)|.
\]

Here
\[
\Gamma_{\alpha} (x^0) = \{(x, y) \in \mathbb{R}_{+}^{n+1} : |x - x^0| < \alpha y\}, \quad \alpha > 0,
\]
is an infinite cone with the vertex at \(x^0 \). It is well-known [4] that
\[
F \in H^p(\mathbb{R}_{+}^{n+1}) \iff N_{\alpha} (F) \in L^p \iff F^+ \in L^p, \quad p > 0.
\]

We also define the **weak maximal function**
\[
WF (x, y) = \sup_{\zeta \geq y} |F (x, \zeta)|, \quad y > 0.
\]
The above expression is understood as follows: we fix \(x \), and for fixed \(y \) we find the supremum over all \(\zeta \geq y \).

We will use the following results.

Lemma 1. ([4], p.173). Suppose \(w \) is harmonic in \(\mathbb{R}_{+}^{n+1} \), and \(M_p (y, u) \leq C \) for some \(p, 0 < p < \infty \). Then
\[
(6) \quad \sup_{x \in \mathbb{R}^n} |u(x, y)| \leq A y^{-n/p}, \quad 0 < y < \infty.
\]

Theorem 4. ([5], p.267). Let \(0 < p \leq 1, a > 0 \), let \(w : \mathbb{R}_{+}^{n+1} \to [0, \infty) \) be a function such that \(w^p \) is subharmonic and satisfies
\[
J_{a,p} := \int_{\mathbb{R}_{+}^{n+1}} t^{ap-1} w(x,t)^p dx dt < +\infty,
\]
and for each \((x, t) \in \mathbb{R}^n \times [0, +\infty)\) let

\[
w_a(x, t) := \frac{1}{\Gamma(a)} \int_0^{\infty} s^{a-1} w(x, s + t) \, ds.
\]

Then \(w_a\) is subharmonic on \(\mathbb{R}^{n+1}_+\) and is finite a.e. on \(\mathbb{R}^n\), and for all \(t \geq 0\),

\[
\int_{\mathbb{R}^n} w(x, t)^p \, dx \leq AC(a, n, p) J_{a,p}.
\]

Theorem 5. ([5], p.269). Let \(m \in \mathbb{N}, p \geq (n-1)/(m+n-1)\) (if \(n = 1\) we suppose \(p > 0\)), and let \(u : \mathbb{R}_+^n \rightarrow \mathbb{R}\) be harmonic. Then, for all \(t > 0\),

\[
\int_{\mathbb{R}^n} |\nabla^m u(x, t)|^p \, dx \leq A(m, n, p)t^{-mp-1}\int_{t/2}^{3t/2} ds \int R^n |u(x, s)|^p \, dx.
\]

Lemma 2. ([13], p.2464). Let \(p > 0\) and let \(F = (U, V_1, ..., V_n)\) satisfy \(M_p(y, U) \leq C\). Then

\[
M_p(y, \nabla^k F) \leq ACy^{-k}, \quad k \in \mathbb{N}.
\]

Notation. We denote by \(D^k_i f(x, y)\) the partial derivative of the function \(f\) of the order \(k\) with respect to \(x_i, i = 1, 2, ..., n+1\). The notation \(f(x, y) \rightarrow x^{y \rightarrow \infty} 0\) means that \(f(x, y)\) converges to 0 uniformly with respect to \(x\), provided \(y \rightarrow \infty\), \(\nabla^k f(x) = (\frac{\partial^k f(x)}{\partial x^1}, ..., \frac{\partial^k f(x)}{\partial x^n})\). Everywhere below the constants \(A(k, n), C, K\) depend only on the parameters pointed in parentheses, and may be different from time to time.

3. Proof of Theorem 2.

Lemma 3. Let \(p > 0\), and let \(F = (U, V_1, ..., V_n)\) satisfy \(M_p(1, F) \leq C\). Then

\[
(7) \quad M_p(y, V_i) \leq AC + \int_{\mathbb{R}^n} \left(\int_y^{1} \sup_{\xi \geq t} |\nabla U(x, \xi)| \, dt \right)^p \, dx, \quad i = 0, 1, ..., n, \quad V_0 = U.
\]

Proof. By the Main Theorem of Calculus, and the Cauchy-Riemann equations, we have

\[
(8) \quad V_i(x, y) - V_i(x, 1) = -\int_y^1 \frac{\partial V_i(x, t)}{\partial t} \, dt = -\int_y^1 \frac{\partial U(x, t)}{\partial x_i} \, dt,
\]

\(i = 1, 2, ..., n,\)

\[
(9) \quad U(x, y) - U(x, 1) = -\int_y^1 \frac{\partial U(x, t)}{\partial t} \, dt.
\]

Then,

\[
M_p(y, V_i) \leq M_p(1, V_i) + \int_{\mathbb{R}^n} \left(\int_y^1 \sup_{\xi \geq t} |\nabla U(x, \xi)| \, dt \right)^p \, dx,
\]

and the result follows. \(\square\)
Lemma 4. Let \(p > 0 \) and let \(0 < y < 1 \). Then

\[
\int_{\mathbb{R}^n} \left(\int_y^1 \sup_{\xi \geq t} |\nabla U(x, \xi)| \, dt \right)^p \, dx \leq
\]

\[
y^p \int_{\mathbb{R}^n} \left(\sup_{\xi \geq y} |\nabla U(x, \xi)| \right)^p \, dx + 2p \int_y^1 t^{p-1} \, dt \int_{\mathbb{R}^n} \left(\sup_{\xi \geq t} |\nabla U(x, \xi)| \right)^p \, dx.
\]

Proof. Denote

\[
\Psi(x, y) := \int_y^1 \sup_{\xi \geq t} |\nabla U(x, \xi)| \, dt.
\]

Following [6] consider

\[
\Phi(x, y) := \Psi(x, y)^p - y^p \left(- \frac{\partial \Psi(x, y)}{\partial y} \right)^p, \quad \Omega(y) := \{ x \in \mathbb{R}^n : \Phi(x, y) > 0 \}.
\]

By definition of \(\Omega(y) \),

\[
\int_{\mathbb{R}^n \setminus \Omega(y)} \Psi(x, y)^p \, dx \leq y^p \int_{\mathbb{R}^n \setminus \Omega(y)} \left(- \frac{\partial \Psi(x, y)}{\partial y} \right)^p \, dx.
\]

Next, the reasons which are similar to those in [6], imply

\[
\int_{\Omega(y)} \Phi(x, y) \, dx - \int_{\Omega(a)} \Phi(x, a) \, dx = \int_y^a \, dx \int_{\Omega(\xi)} - \frac{\partial \Phi(x, \xi)}{\partial \xi} \, dx, \quad 0 < y < a \leq 1.
\]

Moreover, using \(\frac{\partial^2 \Psi}{\partial \xi^2} \geq 0 \) for almost every \(0 < \xi < 1 \), we have

\[
- \frac{\partial \Phi}{\partial \xi} = -p \Psi^{p-1} \frac{\partial \Psi}{\partial \xi} + p \xi^{p-1} \left(- \frac{\partial \Psi}{\partial \xi} \right)^p - p \xi^p \left(- \frac{\partial \Psi}{\partial \xi} \right)^{p-1} \frac{\partial^2 \Psi}{\partial \xi^2} \leq
\]

\[
p \left(- \frac{\partial \Psi}{\partial \xi} \right) \left(\Psi^{p-1} + \xi^{p-1} \left(- \frac{\partial \Psi}{\partial \xi} \right)^{p-1} \right) \leq 2p \xi^{p-1} \left(- \frac{\partial \Psi}{\partial \xi} \right)^p.
\]

Here the last inequality follows from the definition of \(\Omega(\xi) \) and \(0 < p < 1 \). Since

\[
\Phi(x, y) \leq (1 - y) \left| \frac{\partial \Psi(x, y)}{\partial y} \right|,
\]

the function \(\Phi(x, y) \) is negative, provided \(y \) is sufficiently close to 1, and we can take \(a \) such that \(\Omega(a) = \emptyset \). Hence, (12) yields

\[
\int_{\Omega(y)} \Phi(x, y) \, dx \leq 2p \int_y^a \xi^{p-1} \, dx \int_{\Omega(\xi)} \left(- \frac{\partial \Phi(x, \xi)}{\partial \xi} (x, \xi) \right)^p \, dx \leq
\]

\[
2p \int_y^1 \xi^{p-1} \, dx \int_{\mathbb{R}^n} \left(- \frac{\partial \Phi(x, \xi)}{\partial \xi} (x, \xi) \right)^p \, dx.
\]

Adding

\[
\int_{\Omega(y)} \Psi(x, y)^p \, dx \leq \int_{\Omega(y)} \Phi(x, y) \, dx + y^p \int_{\Omega(y)} \left(- \frac{\partial \Phi(x, y)}{\partial y} \right)^p \, dx
\]

with (11), and using (13), we obtain (10). □
The next result is crucial.

Lemma 5. Let $p > 0$ and let $F = (U, V_1, ..., V_n)$ be such that

\begin{align}
1) \quad V_i &\Rightarrow_{y \to \infty} 0, \quad i = 1, ..., n, \\
2) \quad M_p(y, U) &\leq C.
\end{align}

Then

\begin{align}
\left(\int_{\mathbb{R}^n} \left(\sup_{\xi \geq y} |\phi_{ij}(x, \xi)| \right)^p dx \right)^{1/p} &\leq ACy^{-1},
\end{align}

where $\phi_{ij}(x, y)$ is a coordinate of $\nabla V_i(x, y)$, $j = 1, ..., n + 1$, $x_{n+1} = y$, $i = 0, ..., n$, $V_0 = U$.

Proof. Fix $p > 0$ and let $l = \inf \{ j \in \mathbb{N} : p > p_j := (n-1)/(j + n - 1) \}$. Since $\nabla V_i(x, y) \Rightarrow_{y \to \infty} 0$, we may use the following relation (see [5] or [4])

\[\phi_{ij}(x, y) = \frac{1}{(2l - 2)!} \int_y^\infty (s - y)^{2l-2} D_{n+1}^{2l-1} \phi_{ij}(x, s) ds = \]

\[\frac{1}{(2l - 2)!} \int_0^\infty s^{2l-2} D_{n+1}^{2l-1} \phi_{ij}(x, s + y) ds. \]

We have

\[\sup_{\xi \geq y} |\phi_{ij}(x, \xi)| \leq R(x, y), \]

where

\[R(x, y) := \frac{1}{(2l - 2)!} \int_0^\infty s^{2l-2} \left(\sup_{\xi \geq y} |\nabla \nabla_{n+1}^{l-1} \phi_{ij}(x, s + \xi)| \right) ds. \]

To prove (15) it is enough to show that

\begin{align}
\left(\int_{\mathbb{R}^n} \left(\sup_{\xi \geq y} |\phi_{ij}(x, s + \xi)| \right)^p dx \right)^{1/p} &\leq AC y^{-1}.
\end{align}

Since

\[\left(|\nabla \nabla_{n+1}^{l-1} \phi_{ij}(x, \xi)| \right)^p \]

is subharmonic [3], the function

\[w^p(x, s + y) := \left(\sup_{\xi \geq y} |\nabla \nabla_{n+1}^{l-1} \phi_{ij}(x, s + \xi)| \right)^p \]

is also subharmonic, and we may apply Theorem 4 (take $a = 2l - 1, A = A(l, n, p)$) to obtain

\[\int_{\mathbb{R}^n} |R(x, y)|^p dx \leq A \int_0^\infty s^{(2l-1)p-1} ds \int_{\mathbb{R}^n} \left(\sup_{\xi \geq y} |\nabla \nabla_{n+1}^{l-1} \phi_{ij}(x, s + \xi)| \right)^p dx = \]

\[A \int_0^\infty s^{(2l-1)p-1} ds \int_{\mathbb{R}^n} \left(\sup_{\xi \geq y} |\nabla \nabla_{n+1}^{l-1} \phi_{ij}(x, s + \xi)|^{p_j} \right)^{p/p_j} dx. \]
By the choice of p_j, we have $p/p_j > 1$ and we may use the well-known L^{p/p_j}-boundedness of the maximal operator:

$$\int_{\mathbb{R}^n} |R(x, y)|^p dx \leq A \int_0^\infty s^{(2l-1)p-1} ds \int_{\mathbb{R}^n} |\nabla^l D_{n+1}^- \phi_{ij}(x, s + y)|^p dx.$$

Since $D_{n+1}^- \phi_{ij}(x, y)$ is the l-th derivative of V_i, we use Lemma 2 to get

$$\int_{\mathbb{R}^n} |\nabla^l D_{n+1}^- \phi_{ij}(x, y)|^p dx \leq \int_{\mathbb{R}^n} |\nabla^{2l} F(x, y)|^p dx \leq C y^{−2lp}.$$

This gives

$$\int_{\mathbb{R}^n} |R(x, y)|^p dx \leq A(l, n, p) C \int_0^\infty s^{(2l-1)p-1}(s + y)^{−2lp} ds = A(l, n, p) Cy^{−p},$$

and (16) is proved. \square

Proof of Theorem 2. The proof follows from Lemmata 3, 4, 5.

4. **Proof of Theorem 3.**

Lemma 6. Let $p > 0$. Then $F = (U, V_1, \ldots, V_n) \in H^p$ iff

1) $F \Rightarrow_{y \to \infty} 0$, 2) $\left(\sup_{y > 0} |U(x, \eta)| \right)^p dx < C$.

Proof. Let $F \in H^p$, then both 1) and 2) are well-known, [4]. We prove the converse in two steps. At first we show that

$$\left(\sup_{y > 0} |U(x, y)| \right)^p dx \leq C.$$

Then we prove that (18) implies

$$\left(\sup_{y > 0} |V_i(\cdot, y)| \right)^p \in L^1(\mathbb{R}^n), \quad i = 1, \ldots, n.$$

To prove (18), we observe that

$$\sup_{y > 0} |U(x, y)| = \sup_{y > 0} \sup_{\eta \geq y} |U(x, \eta)| = \lim_{y \to 0} \sup_{\eta \geq y} |U(x, \eta)|.$$

Hence, using 2) and Fatou’s Lemma, we obtain

$$\int_{\mathbb{R}^n} \left(\sup_{y > 0} |U(x, y)| \right)^p dx \leq \lim_{y \to 0} \int_{\mathbb{R}^n} \left(\sup_{\eta \geq y} |U(x, \eta)| \right)^p dx \leq C.$$

It remains to show (19). Using Cauchy-Riemann equations, we have

$$V_i(x, y) = [V_i]_{0 \ldots 0}(x, y) = \frac{(-1)^k}{(k - 1)!} \int_0^\infty s^{k-1} D_{n+1}^k V_i(x, s + y) ds =$$
\[\frac{(-1)^k}{(k-1)!} \int_0^\infty s^{k-1}D_{n+1}^kU(x, s + y)ds, \]

where \(k \) is chosen such that the function \(\left(\sum_{(j)} U^2_{(j)}(x, y) \right)^{p/2} \) is subharmonic, \(p \geq p_k = (n-k)/(n+k-1) \), see \([3],[4],[16]\). Since the expression in (20) is one of the tensor coordinates of \(U_{(j)} \), see \([4]\), page 169), we have

\[
\int_{\mathbb{R}^n} \left(\sup_{y>0} |V_i(x, y)| \right)^p dx \leq \int_{\mathbb{R}^n} \left(\sup_{y>0} \sum_{(j)} U^2_{(j)}(x, y) \right)^{p/2} dx = \sup_{y>0} \int_{\mathbb{R}^n} \left(\sum_{(j)} U^2_{(j)}(x, y) \right)^{p/2} dx \leq C \int_{\mathbb{R}^n} \left(\sup_{y>0} |U(x, y)| \right)^p dx.
\]

The last estimate is proved in \([4]\), page 170.

Lemma 7. Let \(p > 0 \) and let \(F = (U, V_1, ..., V_n) \) be such that \(V_i \Rightarrow_{y \to \infty} 0, \ i = 1, ..., n \). Then \(F \in H^p \), provided

\[\begin{align*}
1) & \ M_p(1, F) \leq C, \\
2) & \ M_p(y, U) \leq C, \\
3) & \ I(p) < \infty.
\end{align*} \]

Proof. At first we prove that

\[2^{-p} \int_G \left(\sup_{y>0} |V_i(x, y)| \right)^p dx \leq AC + \int_G \left(\sup_{y>0} |\nabla U(x, y)| \right)^p dx, \quad \forall G \subset \mathbb{R}^n. \tag{22} \]

This follows from \((8), (9)\) the inequality

\[2^{-p} \left(\sup_{y>0} |V_i(x, y)| \right)^p \leq \left(|V_i(x, 1)| \right)^p + \left(\sup_{y>0} |\nabla U(x, y)| \right)^p, \]

\(j = 0, 1, 2, ..., n, V_0 = U \), and the first condition in (21).

Now we finish the proof. Assume that the lemma is not true. Then \(\forall N > 0 \) there exists a set \(E \subset \mathbb{R}^n, 0 < m(E) < \infty, \) such that

\[\int_E \left(\sup_{y>0} |V_i(x, y)| \right)^p dx \geq 4N, \]

for some \(i = 0, 1, ..., n \), \(V_0 = U \). Hence, taking \(G = E \) in (22) we have

\[\int_E \left(\sup_{y>0} |\nabla U(x, y)| \right)^p dx \geq 2N. \]

Then

\[\sup_{y>0} |\nabla U(x, y)| = \sup_{y>0} \sup_{\xi \geq y} |\nabla U(x, \xi)| = \lim_{y \to 0} \sup_{\xi \geq y} |\nabla U(x, \xi)| \]

and Lemma Fatou imply

\[\lim_{y \to 0} \int_E \left(\sup_{\xi \geq y} |\nabla U(x, \xi)| \right)^p dx \geq \int_E \left(\sup_{y>0} |\nabla U(x, y)| \right)^p dx \geq 2N. \]
But this contradicts the third condition of the lemma, since
\[I(p) \geq \int_0^1 dy \int_{\mathbb{R}^n} \left(\sup_{\xi \geq y} |\nabla U(x, \xi)| \right)^p dx \geq \int_0^1 dy \int_E \left(\sup_{\xi \geq y} |\nabla U(x, \xi)| \right)^p dx \geq N. \]

Lemma 8. Let \(p > 0 \) and let \(F = (U, V_1, \ldots, V_n) \) be the harmonic vector satisfying conditions of Theorem 3. Then (18) holds.

Proof. We argue as in the previous Lemma. We have (9), and
\[2^{-p} \int_{\mathbb{R}^n} \left(\sup_{y>0} |U(x,y)| \right)^p dx \leq \int_{\mathbb{R}^n} |U(x,1)|^p dx + \int_{\mathbb{R}^n} \left(\sup_{y>0} |\nabla U(x,y)| \right)^p dx \]
leads to a contradiction.

Proof of Theorem 3. The proof follows from Lemmata 8, 7 and 6.

REFERENCES
