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ABSTRACT. In this paper we develop a Fourier analytic approach
to problems in the Brunn-Minkowski-Firey theory of convex bod-
ies. We study the notion of Firey projections and prove a version
of Aleksandrov’s projection theorem. We also formulate and solve
an analog of the Shephard problem for Firey projections.

1. INTRODUCTION

In [F] Firey extended the notion of the Minkowski sum, and intro-
duced, for each real p, a new linear combination of convex bodies, that
he called p-sums. Lutwak [Lu2], [Lu3] showed that these Firey sums
lead to a Brunn-Minkowski theory for each p > 1. He introduced the
notions of p-mixed volume, p-surface area measure, and proved an in-
tegral representation and inequalities for p-mixed volumes, including
an analog of the Brunn-Minkowski inequality. As a result, he gave a
solution of a generalization of the classical Minkowski problem.

The Fourier analytic approach to sections and projections of convex
bodies has recently been developed and has led to several results in the
classical Brunn-Minkowski theory. In this paper we apply the Fourier
analytic methods to study what we call Firey projections of convex
bodies in the context of the Brunn-Minkowski-Firey theory. In partic-
ular we consider a generalization of Aleksandrov’s projection theorem
and formulate and solve an analog of the Shephard problem for Firey
projections.

It was proved in [KR7Z] that if the surface area measure of a convex
body K is absolutely continuous, then

1~
Voln_1([(|9J'> = —;fi((a) Vo Sn_la (1>

where K|t is the orthogonal projection of K onto the hyperplane 6+,
fx is the curvature function of the body K extended to a homogeneous
of degree —n — 1 function on R™, and the Fourier transform is in the
sense of distributions. It turns out that this formula can serve as the

main tool in the study of different problems concerning the volumes of
1
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projections. In particular, it can be applied to the following problem
of Shephard.

Let K, L be origin-symmelric convex bodies in R"™ and suppose that,
for every § € S,

Vol,_1 (K |6") < Vol,_,(L|6%). (2)
Does it follow that
Vol,,(K) < Vol,(L)? (3)

This problem was solved independently by Petty [P] and Schneider
[Scl], who showed that the answer is affirmative if n < 2 and negative
if n > 3. It is also well known [Scl], that the Shephard problem has an
affirmative answer if L is a projection body, i. e. if V¥ € S™~!

1
h(0) = Vol,,_, <M|9J‘) =3 / 60 - u|d S(M,u)
gn—1

for some convex body M. Here S(M,-) is the surface area measure
(see [G]) and hr(z) = max{z-y: y € L} is the support function of L.
On the other hand the existence of a body which is not a projection
body leads to a counterexample. Thus the concept of the projection
body represents one of the crucial steps in the solution of the Shephard
problem.

The purpose of this paper is to generalize the above facts to the
context of the Firey theory. We will use the concept of a p-projection
body, introduced by Lutwak [Lu3], [LYZ]. Let II,K, p > 1 denote the

compact convex set whose support function is given by

1
WK @) = - / |z ulPd S,(K,u), x€R" (4)
n
Sn—1

Here S,(K,-) is the p-surface area measure; see Section 2 for the def-
inition. A convex body M is called a p-projection body if there is a
convex body K such that M = II,K. We say that the support function
h(IL,K,-) of II,K defines Firey projections of a body K.

Our approach is based on the Firey projection analog of (1) (see
Section 3):
2n C,

n

LK)(©).

Here p is not an even integer, f,(K,-) is the p-curvature function of
the body K, and () is a constant depending only on p. We apply
this formula together with Lutwak’s generalized Minkowski theorem
to obtain a generalization of Aleksandrov’s projection theorem. The

h(Hp[/(a f)p =
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above formula also plays a crucial role in the solution of the following
question.

Shephard problem for Firey projections. Consider two origin-
symmelric conver bodies K and I in R”. Fiz p > 1 and suppose that

I,K CIIL,L. (5)
Does it follow that
Vol,,(K) < Vol,(L) for1 <p<n,

and

Vol,,(K') > Vol, (L) forn < p?

In the case p = 1, condition (5) is equivalent to (2), and so the
answer is affirmative if n < 2 and negative if n > 3. In Section 4, we
will show that the answer is negative for any n > 2 and p > 1. Actually,
we will prove that the Shephard problem for Firey projections has an
affirmative answer if L is a p-projection body, and that the existence of
the body which is not a p-projection body leads to a counterexample.

We note that there should be two cases in the Shephard problem for
Firey projections. Indeed, consider a convex body K and let I = r K
be a dilation of K, 0 < r < 1. Then (see Section 2)

dS,(rK,-) = hij-_(p(-)dS(rK, ) =r""PdS, (K, ).
Sofor0<r<1andn<p:
I,K C II,(rK),

but
Vol,,(K) > Vol,(rK).

Observe that if p = n then S,(rK,-) = S,(K,-), so the n-projection
body of K does not contain any information about the size of K.

The paper is organized as follows. In Section 2 we present the neces-
sary auxiliary facts from the Brunn-Minkowski-Firey theory. In Section
3 we prove an analog of formula (1) for p > 1, p is not an even integer.
Using this formula we prove a generalization of the Aleksandrov’s pro-
jection theorem. Section 4 is devoted to the solution of then Shephard
problem for Firey projections.

Acknowledgment: The authors wish to thank Alex Koldobsky and
Erwin Lutwak for fruitful discussions and for series of suggestions that
improved the paper.
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2. THE BRUNN-MINKOWSKI-FIREY THEORY

Firey [F] extended the concept of Minkowski sum, and introduced
for each real p > 1, a new linear combination of convex bodies, the
so-called p-sums:

h(aK +, BL,") = oh(K, )" + Bh(L, ).

Here K, L € Ky are origin-symmetric convex bodies, a, 3 > 0.

In a series of papers Lutwak [Lu2], [Lu3] showed that the Firey sums
lead to a Brunn-Minkowski theory for each p > 1. He introduced the
notion of p-mixed volume, V,(K, L), p > 1 as

K L)-V(K
Ry (K L) = fim LB e D) = VIE)
P

e—0 o)

K, L € Ky. Lutwak proved that for each K € Ky, there exists a positive
Borel measure S,(K,-) on S"! so that

1
Vi(K,L) = — / h(L,u)?dS,(K,u),
n
Sn—1
for all L € Ky. It turns out that the measure S,(K,-) is absolutely
continuous with respect to S(K,-), and has the Radon-Nikodym deriv-
ative,
dS,(K,-)
dS(K,-)
If S,(K,-) is absolutely continuous with respect to spherical Lebesgue
measure, 5, we have

= h(K,-)'P.

dS,(K,-) .
a5 - fp([\a')a

almost everywhere with respect to S. In this case a convex body K €
Ky is said to have the p-curvature function f,(K,-): S"' — R, and
hence

V(K.L) =+ / h(L,w)? f, (K, u)dS(u),

Sn—1
for all I. € Ky. In particular
1
Vol(K) = — / (K, u)? fo( K, u)dS(u). (6)
n
Sn—1

Finally, if a body K has both p-curvature and the curvature functions,
then

(K, =h(K,)'?f(K,).
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Lutwak [Lu2] generalized the Brunn-Minkowski inequality to the case
of p-mixed volumes as follows

Vo (K, L) > Vol(K)"™"Vol(L)?, p> 1.

He also proved a generalization of the classical Minkowski theorem,
which states that given p > 0, p # n, and a continuous even function
g : S™!' — RT, there exists a unique convex body K such that

fp<[(’ ) =g.

3. FOURIER FORMULA FOR FIREY PROJECTIONS

Our main tool is the Fourier transform of distributions. We denote
by & the space of rapidly decreasing infinitely differentiable functions
(test functions) on R”™ with values in C. By S’ we denote the space
of distributions over §. Every locally integrable real valued function
f on R™ with power growth at inﬁnity represents a distribution acting
by integration: for every ¢ € S, fRﬂ . The Fourier

transform of a distribution f is defined by <f,<p> = ( )" (f, ), for
every test function ¢.

Let p be a finite Borel measure on the unit sphere S"~'. We extend
p to a homogeneous distribution of degree —n — p. A distribution p, .
is called the p-extended measure of u if, for every even test function

¢ € 5(R),
(end) = [ G777, 00)auce) )

Sn—1

Here ry =rifr > 0, and ry = 0 if r < 0. In most cases we are only
interested in even test functions supported outside of the origin, for

which
(7o) = [ ee)d /| 17 g(r€) d

R

see ([GS], pp. 50, 51) for the general definition of <7“_|__]_p, o(ré)).

If 1 is absolutely continuous with density g € L;(S"'), we define
the extension g(z), * € R™\ {0} as a homogeneous function of degree
—n—p: g(z) = |z|7"" P g(z/|z]), and identify 11, . with g.

Throughout the paper, we write that two homogeneous distributions
are equal on the sphere meaning that their homogeneous extensions are
equal as distributions on R”. Recall that the Fourier transform of an
even homogeneous distribution of degree p is an even homogeneous
distribution of degree —n — p.
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The following fact is due to Semyanistyi [Se|, Formula 4.7. We in-
clude here a proof similar to that from [K2], Lemma 3.

Theorem 1. Let p > —1, p # 2k, k € NU {0}. For every § € 5" 1,

o 1
)= =g [ 10 sl duty)
p

where the constant
_2PAl((p+1)/2)
T I(-p/2)
is posilive for each p € (4k — 2,4k) and negative for p € (4k,4k + 2).

Proof: Let ¢ € S(R") be an even test function so that 0 ¢ supp(cg).
Then, by the definition of p,, .,

(e 8) = {ppes ) = / (0 /| 172 d(r0)d

By Lemma 1 from [K2],

[ 10-arita)s = ayc / /|1 (r8)

for any even ¢» € S(R”) with 0 ¢ supp(¢). This gives (with = ®)

(Tipe, d) = du

1 ; p —
e / S / 0+ €Pdu(0) =
Rn sn—1

1 .
e, / 0 £Pdu(0). ).

Since ¢ is an arbitrary even test function with 0 ¢ supp(q/b'\), the distri-
butions i, and 1/(47 C,) [gu_ [0-£|7dp(0) can differ by a polynomial
only. But both distributions are even and homogeneous of degree p,
so the polynomial must be equal to zero, and [i,. coincides with the

continuous function 1/(4w Cp) [q._, |0 - £|Pdu(0).

O

The following statement follows from (4) and Theorem 1.
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Theorem 2. Lel p > 1, where p is nol an even integer. Then for every

£e st

—.

%AKNﬁzgaMWKOﬂ (8)

where C,, is as above. In particular if S,(K,-) is absolutely continuous
with respect to the spherical Lebesque measure, then

TR €)= 5= bl €

Using (8) we may prove the following analog of Aleksandrov’s pro-
jection theorem:

Theorem 3. Let p > 1, p # n, where p is not an even integer, and let
K, L be origin-symmelric convex bodies in R"™. Then

I,K=1,L, < K=L. (9)

Proof: Relation (8) and the uniqueness theorem of the Fourier trans-
form yield S, .(K,-) = S,.(L,-). By homogeneity, S,(K,-) = S,(L,-)
is the same as S, (K,-) = S,.(L,-). It remains to use the uniqueness
property of p—surface area measures for p # n (see [Lu2], Corollary

2.3).
O

Remark. In the case p = n, where n is not an even integer, it follows
that 1I,K = II,,L implies K and L are dilates. The uniqueness of
the Fourier transform gives S,(K,:) = S.(L,:). But now we may
only conclude ([Lu2], Lemma 2.4) that K and L are dilates (because
Sn(K,-) does not change under dilation). Theorem 3 is not true for
even values of p. Indeed, one can perturb S,(K,-) (i.e., perturb the
body K') without changing A(Il, K, &) (see the beginning of the next
section for an example of such a perturbation).

Another immediate consequence of Theorem 1 is the characterization
of p-projection bodies, where p is not an even integer. The following is
equivalent

e [ is a p-projection body,
e 3p on S™! such that CphY = p, .,
o (R™ || ||z+) is isometric to a subspace of L,.

The last fact can be found in [K1].
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4. SOLUTION OF THE SHEPHARD PROBLEM FOR FIREY
PROJECTIONS

Shephard problem for Firey projections. Consider two origin-
symmetric convex bodies K and L in R”. Fix p > 1 and let

I,k CIIL,L.
Does it follow that
Vol,,(K) < Vol,(L) for1 <p<n,

and

Vol,,(K') > Vol, (L) forn < p?

We first show that the answer is always negative if p is an even
integer. It turns out that for any body K € R™ there exists a body L
in R” such that the Firey projections of bodies K and L are equal but
their volumes are different.

Let p be an even integer. Then |z - £|P = (z - £)?, and there exists a

nonzero continuous even function g on S™~! such that

/ |z - €|Pg(x)dx = 0, Ve e snl. (10)

Indeed, if p = 2k, then (z - £)?* is a polynomial of degree 2k with
coefficients depending on £. So, it is enough to construct a nontrivial
even function g, satisfying

/ izl alrg(x)dr =0,
Sn—l
for all integer powers 0 < 1; < 2k such that oy + 1o + - + 1, = 2k.

Taking g(z) = > ¢z¥ and solving the system of linear equations, one
=1

can find a nontrivial solution ¢y, ..., ¢, provided m is big enough.

Consider an origin-symmetric convex body K in R™ with a strictly
positive p-curvature function (i.e f,(K,£) > 0, V&€ € S™7'). We may
assume that

/ W2.(6)g(€)dé > 0,

Sn—1

(otherwise consider —g(&) instead of g(£)). Choose & > 0 such that
(K €) —eg(é) >0  VéEe §"
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Then we may use the existence theorem for p-curvature functions, (see
[Lu2]), to conclude that there exists an origin-symmetric convex body

L in R™ such that

Jo(L,€) = Jo(K,€) = eg(§). (11)
Applying (10) we get that A(Il,L, z) = A(II,K, z), or

I,L =1I,K.
But using (6) we have
Vol(K) = l/ B (2) (K, 2)da = l/ B2 (2)f, (L, 2 )da +
n Jgon—1 n Jgn—1

+ = / he(z)g(z)dx > V,(L, K) > Vol(L) = Vol(K)=.

nsn—l
So if Vol(K) = Vol(L) then there is an equality in the generalized
Brunn-Minkowski inequality and then L and K are dilates (see [Lu2]).
Thus K = L, but by (11) this contradicts the uniqueness of the p-
curvature function.

Theorem 4. The Shephard problem for Firey projections has a nega-
tive answer for any p > 1 and n > 2.

Proof: Fix p > 1, p # n, p is not an even integer. Then it follows
by Theorem 5, below, that for a given dimension n the answer is affir-
mative if and only if all convex bodies in R”™ are p-projection bodies.
This is equivalent to saying that any n-dimensional normed space can
be isometrically embedded into L,, which is not true for any n > 2 (see
K1)

O

By an approximation argument (see [Sc2], pp. 158-160), we may as-
sume in the formulation of Shephard’s problem that the bodies K and
L are such that hg, hj, are infinitely smooth functions on R™\ {0}.

Then the Fourier transforms A%, A} are the extensions of infinitely dif-
ferentiable functions on the sphere to homogeneous distributions on
R™ of degree —n — p (see the proof of Lemma 5 from [K3]). Moreover,
by the same approximation argument, we may assume that our bodies
have absolutely continuous p-surface area measures. Therefore, in the
rest of this paper, K and L are origin-symmetric convex bodies with in-
finitely smooth support functions and absolutely continuous p-surface
area measures.

Theorem 5. Lel p > 1, p # n, where p is nol an even integer.
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(i) If a body L is such that C,hL(0) > 0 for all § € S™1 then the
Shephard problem for Firey projections has an affirmative answer for
this L and any K. .

(ii) If the curvature function fx is positive on S™~' and C,h%. is nega-
tive on an open subsel of S™~' then there exists a body L giving together
with K a counterexample in Shephard’s problem for Firey projections.

Proof: This theorem will follow from the next two lemmas and the

fact that the condition II, K C II, L is equivalent (see Theorem 2) to
Opfp(Ka )(‘9> < Opfp(lfa -)(9), €S

Lemma 1. Consider p > 1, p # n, where p is not an even integer. Let

K, L be origin-symmetric convexr bodies in R™ and let L be such that

hy, is infinitely smooth. Suppose also thal the surface area measures of

K, L are absolutely continuous. If

0 < Cp R (0),

and
Cy fo(K)(0) < Cp (L,)(0) Vo€ 5m,
then
Vol,,(K) < Vol,(L).
Proof: From C, f,(K,)(0) < C, f,(L,-)(6) and C, k2 (0) > 0, ¥ €
S™=1 we get
[ BorEom s [ EoLE s = o).
Sn—l Sn—l

Using Parseval’s formula on the sphere (see Appendix below)

() = (2m)" / b5 (0) f,(L,0)d0 = n(27)"Vol,(L).

But
[ B LT 08 = [ 10140008 = 2V, (K. 1)

gn—1 gn—1
Thus

Vo(K, L) < Vol,(L).
Now we apply the Lutwak’s extension of Minkowski inequality:

n—p

V,(K, L) > Vol,(L)=Vol,(K) =

to get

n—p

Vol,(L) > Vol,(L)=Vol,(K)=",
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or
Vol P(L) > Vol P (K).
Finally
Vol,,(L) > Vol,,(K), for 1 <p<mn,
and

Vol,,(L) < Vol,(K), for n < p.
O

Lemma 2. Consider p > 1, p # n, where p is not an even inleger,
and let K be such that fx(0) > 0V0 € S™'. If C,h%. is negative on
an open subset of S™™', then there exisls an origin-symmetric convex

body L in R™, such that

—— e—

Opfp(Ka ) < Cpfp([fa ')a
but
Vol,.(K) > Vol,(L).

Proof: Tet @ = {0 € 5" : C,hh(0) < 0}. Consider a function
v € C(S"") such that C, v is a positive even function supported on
2 and v is not identically zero. We extend v to a homogeneous function

rPv(f) of degree p on R™ Then the Fourier transform of rPv(f) is a

homogeneous function of degree —n — p: rPv(f) = r~""Pg(f), where
g is an infinitely smooth function on S™~' (see the proof of Lemma 5
from [K3]).

Since ¢ is bounded on S™7' and f,(K,0) = h}{_p(a)fk(@) > 0, one

can choose a small ¢ > 0 so that, for every # € S"~! and r > 0,
fp(Lyr0) = fo( K, r0) 4+ er™""Pg(6) > 0.

By Lutwak’s [Lu2] extension of the Minkowski’s existence theorem,
fo(L,-) defines an origin-symmetric convex body L € R"™ By the
definition of the function v,

—— e— e —

Cpfp(L;-)(r0) = Cp fo(K,-)(r0) + er? Cpo(0) = C, f, (K, -)(r0).
Next, since C}v is supported and is positive in the set where C'pf;?: <0,

[ BT 00 = [ EOLF @b [ oo <

Sn—1 Sn—1 Sn—1

/ W (0) () (0)d0 = ().

§n=1
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Now the Parseval’s formula (see the appendix below) gives

(*)

(2m)" / By (0) f,(K,0)d0 = n(2m)"Vol,,(K),
and
[ 0500 = ay [ 150152000 -

gn—1 Sn—
n(2m)"V,(L, K). Thus V,(L, K) < Vol,(K). As in the previous lemma,
this implies
Vol,,(K) > Vol,(L), for 1 <p < n,
and
Vol,,(K) < Vol, (L), for n < p.
O

APPENDIX : A VERSION OF PARSEVAL’S FORMULA ON THE SPHERE

[ B0 = ey [ w00, oo
gn—1 gn—1
We follow [KRZ].
Proposition 1. Let E(t) = t*¢™", k> p, k € N, ur(€) = l@(f)
Then for almost all (with respect to the Lebesque measure) 6 € S™1,

/t”_1+p|,uL(t9)|dt < 0.
0

Proof: Since py, is a bounded function (A, is homogeneous of degree

1, so E(hy) € L1(R")),
1
/t”‘1+p|pL(t9)|dt <oo Vhe S
0

It remains to show that for almost all 8

o0

/t”‘1+p|pL(t9)|dt < 0. (12)

1
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Let n be even and let m be the first even integer greater than p. One
may see that

nt+m+42 _p4
A2 {h%ke hi

€ Li(R"). (13)

In fact, after differentiation, the function in front of the exponent is the
sum of homogeneous functions of degrees greater than —n, and each of
them is continuous on the unit sphere.

Now, (13) implies that £ — [£]"T" 24, (€), € € R™ is a bounded
function, since it is the Fourier transform of an I, —function, hence

[t < [ e < .
l€l>1 le|>1
Passing to the polar coordinates we get (12).
Finally, one can put % in place of 7”'7;7"'2
n.

to prove result for odd

O
Proposition 2. Let ug, be as above and ¢ € S with 0 ¢ supp(¢). Then

o0

dr T(EER) [ dr
x)dx rT = Lt (6)do rf :
gﬁm> !a o= ﬁ[ﬁ) !m W
Proof: Observe that mh\L)(f) = r~"ur(&/r) for every r > 0. We
have
/,uL(;C)dx/r_p_lqb(r:r:)dr = /r_p_ldr /(/ﬁ(r:v)/LL(:r;)dx =
Rn 0 0 Rn
rP=tdr | H(Epr(E)r)r~"dE = [ r7P7 dr g(y)E(r hi(y))dy =
[ [7]
= [ dy)dy [ r " E(r hy(y))dr.
[Fon]

By making a substitution r hz(y) = ¢ in the last integral and using the
fact that

[ ey - M)
4
0
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we get the desired result

o0

[ matae [ otreyir = KEED L) 300, -

- L)y gy - HE— D 3 )
— M/hp(§)¢(§)d§ = / @(Q)de /r-p—lqb(re)dr.

4
R™ gn—1 0

Proposition 3. Let pr, be as above. Then

o0

I'((2k 4
/r”_l"'p,u,;(r@)dr _NER =D/, vee s,
4
0 (15)
Proof: Let ¢ € S be such that 0 ¢ supp(¢). Passing to the polar
coordinates, using Proposition 1 and (14), we get

Jotoe [t
/ (]()t”-lﬂmw)dt) ( / ¢(r9)r;j:1) b =

Sn—1 0

_ w / 77 (0) (/ gb(rﬁ)r;l:]) do.

Sn—1 (0]
Now we put ¢(rf) = u(r)v(8), where v is any infinitely smooth function
on S™~! and wu is a non-negative test function on R, such that 0 ¢
supp u. This gives:

o0

/ (/t”"“pm(t@)dt)v(ﬁ)da = w / 72 (0)0(0)d0

Sn—1 0 Sn—1
for every v € C*°(S™1).

Proposition 4. With the same notation,

/fp[\"l' hL

pr(€) de.
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Proof: First, note that both integrals in the latter formula converge
absolutely, because hj, i1s a homogeneous function of degree 1 and by
Proposition 1.

Assume at first that p is not an integer. Since E(hL)(j)(O) =0,y =
1,...,2k — 1, we have

/fp(K,x)E(hL)(x)dx —

oo F(hy)(rf) — iE(hL)(j)(O)rj/j!

[ o | . ir

Sn—1 0

Let 7. be the standard Gaussian density with variance €. Then the
convolution FE(hyp) * 7. is an even test function. Hence, the integral

[»] . .
oo (B(hp) % 7)(r0) — Y (E(hy) * 7)Y (0)r? /5!

j=0
Tp+1

dr

0
is well defined for any ¢ > 0, and is equal to <7“_|__p—1, (E(hr) *7:)(r0))
(see [GS], p. 51). Splitting it into two integrals over [0, 1] and [1, c0)
and using the fact that the derivatives up to order 2k —1 of the function
F(r) = (E(hr)*~.)(rf) are uniformly (with respect to €) bounded, we
get

[v] () (0)rd
oo (B(hy) % 7.)(r) — Y Ll 20 o0
lim 7=0 5 dr = M dr
e—0 rpt+l N rptl
0 0

This, together with the definition of p—extended measure and the dom-
inated convergence theorem gives:

/fp(K,x)E(hL)(x) dr = lim (ri?=' (E(hp)*.)(r0)) f,(K,0)df =

i () k) 32 = B () () #9) =
. 1 TN TRV ()
gN§FZh%J@EMMO%@%=
1 ——

oo | (B ) (€)pr(€) dE.
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In the case p is an integer, the proof follows the same lines. The only
difference is that one has to use formulas (5), (6) from ([GS], p. 51) to
define <'r';p_1, (E(hr) *7.)(r0)).

O

Proposition 5. With the same notation,
P((2k —p)/4) .
HEEZDI [ 1 oy 0100 =

o0

F(K,)(0) / I (00 diedf.
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Proof: Note that

A 0) = [ By (16)
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Passing to polar coordinates and using (16), Proposition 4, and the
fact that f,(K,-) is a homogeneous function of degree —n — p on R",
we get

M/fp[x AT dﬂ_/fp[xx JE(hi)(v)dr =

27r /fp K. )(&pr(&)dE =

Rn

(K, )(0)do / I L () dr
0

O

We finish the proof of Appendix by comparing Propositions 3 and 5.
O
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