Harmonic Analysis and Convex Geometry, Fall 2013, August 30.

Instructor: Dmitry Ryabogin

Assignment 1.

1. Problem 1. Prove the Radon Theorem: Each set of affinely dependent point (in particular, each set of at least $n+2$ points) in \mathbb{R}^{n} can be expressed as the union of two disjoint sets whose convex hulls have a common point.
2. Problem 2. For $A \subset \mathbb{R}^{n}$ the set of all convex combinations of any finitely many elements of A is called the convex hull of A and is denoted by conv A.
a) Prove the Caratheodory Theorem: If $A \subset \mathbb{R}^{n}$ and $x \in \operatorname{conv} A$, then x is a convex combination of affinely independent points of A. In particular, x is a convex combination of $n+1$ or fewer points in A.
Hint: The point $x \in \operatorname{conv} A$ has a representation

$$
x=\sum_{j=1}^{k} \lambda_{j} x_{j}, \quad x_{j} \in A, \quad \lambda_{j}>0, \quad \sum_{j=1}^{k} \lambda_{j}=1
$$

with some $k \in \mathbb{N}$. Assume that k is minimal. Using the definition of an affine dependence obtain an affine representation of x with non-negative coefficients at least one of which is zero. Get a contradiction with a minimality of k.
b) Prove that in \mathbb{R}^{n}, the convex hull of a compact set is compact.

Hint: Let $A \subset \mathbb{R}^{n}$ be a compact set and let S be the set of points

$$
\alpha=\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{R}^{n+1}: \quad \sum_{j=0}^{n} \alpha_{j}=1, \quad \alpha_{j} \geq 0 .
$$

For each point

$$
(\alpha, x):=\left(\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n}\right),\left(x_{0}, x_{1}, \ldots, x_{n}\right)\right) \in S \times A^{n+1}
$$

let $f(\alpha, x)=\sum_{j=0}^{n} \alpha_{j} x_{j}$. Prove that $f\left(S \times A^{n+1}\right)$ is compact. Conclude that $f\left(S \times A^{n+1}\right)=$ conv A.
3. Problem 3. Let \mathcal{M} be a finite family of convex sets in \mathbb{R}^{n} and let $K \subset \mathbb{R}^{n}$ be convex. If any $n+1$ elements of \mathcal{M} are intersected by some translate of K, then all elements of \mathcal{M} are intersected by a translate of K.
4. Problem 4. Let $A \subset \mathbb{R}^{n}$ be a set with $\operatorname{diam} A \leq 2$. Prove that A lies in a Euclidean ball of radius $\sqrt{\frac{2 n}{n+1}}$. If A does not lie in any smaller ball, then the closure of A contains the vertices of a regular n-simplex of edge-length 2 .
Hint: By the previous problem we can assume that the cardinality of A, card $A \leq n+1$. In this case, let y be the center of the smallest Euclidean ball containing A and let $r=r(A)$ be its radius. Denote

$$
\left\{z_{0}, \ldots, z_{m}\right\}=\{x \in A:|y-x|=r\}, \quad m \leq n
$$

Prove that $y \in \operatorname{conv}\left\{z_{0}, \ldots, z_{m}\right\}$. We can assume that $y=0$. Hence,

$$
0=\sum_{j=0}^{m} \lambda_{j} z_{j}, \quad \sum_{j=0}^{m} \lambda_{j}=1, \quad \lambda_{j} \geq 0
$$

Since $4 \geq\left|z_{k}-z_{j}\right|^{2}=2 r^{2}-2 z_{k} \cdot z_{j}$, show that

$$
1-\lambda_{k} \geq \sum_{j=0}^{m} \lambda_{j} \frac{\left|z_{j}-z_{k}\right|^{2}}{4} \geq \frac{r^{2}}{2}
$$

and conclude that $r^{2} \leq \frac{2 m}{m+1}$. What happens if we have $1-\lambda_{k}=\frac{r^{2}}{2}$?

