Harmonic Analysis and Convex Geometry, Fall 2013, August 30.

Instructor: Dmitry Ryabogin

Assignment 1.

- 1. **Problem 1.** Prove the *Radon Theorem*: Each set of affinely dependent point (in particular, each set of at least n+2 points) in \mathbb{R}^n can be expressed as the union of two disjoint sets whose convex hulls have a common point.
- 2. **Problem 2.** For $A \subset \mathbb{R}^n$ the set of all convex combinations of any finitely many elements of A is called the *convex hull* of A and is denoted by convA.

a) Prove the Caratheodory Theorem: If $A \subset \mathbb{R}^n$ and $x \in \text{conv}A$, then x is a convex combination of affinely independent points of A. In particular, x is a convex combination of n + 1 or fewer points in A.

Hint: The point $x \in \text{conv}A$ has a representation

$$x = \sum_{j=1}^{k} \lambda_j x_j, \qquad x_j \in A, \quad \lambda_j > 0, \quad \sum_{j=1}^{k} \lambda_j = 1$$

with some $k \in \mathbb{N}$. Assume that k is minimal. Using the definition of an affine dependence obtain an affine representation of x with non-negative coefficients at least one of which is zero. Get a contradiction with a minimality of k.

b) Prove that in \mathbb{R}^n , the convex hull of a compact set is compact.

Hint: Let $A \subset \mathbb{R}^n$ be a compact set and let S be the set of points

$$\alpha = (\alpha_0, \alpha_1, \dots, \alpha_n) \in \mathbb{R}^{n+1}: \quad \sum_{j=0}^n \alpha_j = 1, \quad \alpha_j \ge 0.$$

For each point

$$(\alpha, x) := ((\alpha_0, \alpha_1, \dots, \alpha_n), (x_0, x_1, \dots, x_n)) \in S \times A^{n+1}$$

let $f(\alpha, x) = \sum_{j=0}^{n} \alpha_j x_j$. Prove that $f(S \times A^{n+1})$ is compact. Conclude that $f(S \times A^{n+1}) =$ convA.

3. **Problem 3.** Let \mathcal{M} be a finite family of convex sets in \mathbb{R}^n and let $K \subset \mathbb{R}^n$ be convex. If any n + 1 elements of \mathcal{M} are intersected by some translate of K, then all elements of \mathcal{M} are intersected by a translate of K. 4. **Problem 4.** Let $A \subset \mathbb{R}^n$ be a set with diam $A \leq 2$. Prove that A lies in a Euclidean ball of radius $\sqrt{\frac{2n}{n+1}}$. If A does not lie in any smaller ball, then the closure of A contains the vertices of a regular *n*-simplex of edge-length 2.

Hint: By the previous problem we can assume that the cardinality of A, card $A \le n+1$. In this case, let y be the center of the smallest Euclidean ball containing A and let r = r(A) be its radius. Denote

$$\{z_0, \dots, z_m\} = \{x \in A : |y - x| = r\}, \qquad m \le n.$$

Prove that $y \in \operatorname{conv}\{z_0, \ldots, z_m\}$. We can assume that y = 0. Hence,

$$0 = \sum_{j=0}^{m} \lambda_j z_j, \qquad \sum_{j=0}^{m} \lambda_j = 1, \qquad \lambda_j \ge 0.$$

Since $4 \ge |z_k - z_j|^2 = 2r^2 - 2z_k \cdot z_j$, show that

$$1 - \lambda_k \ge \sum_{j=0}^m \lambda_j \frac{|z_j - z_k|^2}{4} \ge \frac{r^2}{2},$$

and conclude that $r^2 \leq \frac{2m}{m+1}$. What happens if we have $1 - \lambda_k = \frac{r^2}{2}$?