Harmonic Analysis and Convex Geometry, Fall 2013, November 15.

Instructor: Dmitry Ryabogin

Assignment 10.

1. Problem 1.

a) Find the curvature of the curve

$$
x=t-\sin t, \quad y=1-\cos t, \quad z=4 \sin \frac{t}{2} .
$$

b) Find the curvature of the curve given implicitly by the equations

$$
x+\sinh x=\sin y+y, \quad z+e^{z}=x+\log (1+x)+1
$$

at the point $(0,0,0)$.
2. Problem 2. Find the expression for the curvature of the plane curve given in polar coordinates.
3. Problem 3. Let the convex curve $\boldsymbol{\alpha}$ be a boundary of a convex body $K \subset \mathbb{R}^{2}$.
a) Prove that the length of $\boldsymbol{\alpha}$ is given by $L=\int_{0}^{2 \pi} h(\theta) d \theta$, where $h(\theta):=h_{K}((\cos \theta, \sin \theta))$.

Hint: Problem 2 b), Assignment 7.
b) Prove that if K is of constant breadth (width) μ, then length $(\boldsymbol{\alpha})=\pi \mu$. Conclude that all bodies of the given constant breadth have the same perimeter.
c) Prove that the line $x \cos \theta+y \sin \theta=h(\theta)$ is tangent to the curve at the point

$$
\boldsymbol{\alpha}(\theta)=(x(\theta), y(\theta))=\left(h(\theta) \cos \theta-h^{\prime}(\theta) \sin \theta, h(\theta) \sin \theta+h^{\prime}(\theta) \cos \theta\right) .
$$

Hint: A regular convex plane curve can be defined as an envelope of its tangent lines. Differentiate $x \cos \theta+y \sin \theta=h(\theta)$ with respect to θ and solve the system.
(In general, a regular curve $\boldsymbol{\alpha}$ is an envelope of the family of curves \mathcal{F} if at every point $\boldsymbol{\alpha}$ is tangent to at least one of the curves in \mathcal{F} and for every segment of $\boldsymbol{\alpha}$ there are infinitely many points in the segment where $\boldsymbol{\alpha}$ is tangent to curves from \mathcal{F}. Use (prove, if you want) the fact that for every point (x, y) of the envelope of the family $\mathcal{F}=\left\{\gamma_{\beta}\right\}_{\beta \in(a, b)}$ of curves (given by the equations $\left.\varphi(x, y, \beta)=0\right)$ there exists $\beta \in(a, b)$ such that

$$
\left.\varphi(x, y, \beta)=0, \quad \frac{\partial}{\partial \beta} \varphi(x, y, \beta)=0\right) .
$$

d) Prove that the radius of curvature of the curve at $\boldsymbol{\alpha}(\theta)$ is $R(\theta)=h(\theta)+h^{\prime \prime}(\theta)$.

Hint: Differentiate again

$$
d x(\theta)=-\left(h(\theta)+h^{\prime \prime}(\theta)\right) \sin \theta d \theta, \quad d y(\theta)=\left(h(\theta)+h^{\prime \prime}(\theta)\right) \cos \theta d \theta
$$

and observe that

$$
\left(x^{\prime}(\theta), y^{\prime}(\theta)\right) \cdot(-\sin \theta, \cos \theta)=\sqrt{\left(x^{\prime}(\theta)\right)^{2}+\left(y^{\prime}(\theta)\right)^{2}}=\frac{d s}{d \theta}
$$

e) Conclude that the length of $\boldsymbol{\alpha}$ is "an average" of the radius of curvature $L=$ $\int_{0}^{2 \pi} R(\theta) d \theta$.
f) Prove that the area enclosed by $\boldsymbol{\alpha}$ is given by $A=\frac{1}{2} \int_{0}^{2 \pi} h(\theta) R(\theta) d \theta$.

Hint: Use the formula $A=\frac{1}{2} \int_{0}^{2 \pi}\left(x(\theta) y^{\prime}(\theta)-x^{\prime}(\theta) y(\theta)\right) d \theta$ from Calc III.
g) Prove that the area enclosed by $\boldsymbol{\alpha}$ is given by $A=\frac{1}{2} \int_{0}^{2 \pi}\left(h(\theta)^{2}-h^{\prime}(\theta)^{2}\right) d \theta$.

Hint: Integrate by parts.

