Harmonic Analysis and Convex Geometry, Fall 2013, November 22.

Instructor: Dmitry Ryabogin

Assignment 11.

1. Problem 1.

a) Find the principle curvatures of the paraboloid $z=a\left(x^{2}+y^{2}\right)$ at the point $(0,0,0)$.
b) Find the lines of curvature of the Helicoid

$$
x=u \cos v, \quad y=u \sin v, \quad z=c v .
$$

c) Find the mean and the Gaussian curvature of the paraboloid $z=a x y$ at the point $x=y=0$.
2. Problem 2. Let $N(p)=\frac{\boldsymbol{\alpha}_{u} \times \boldsymbol{\alpha}_{v}}{\left|\boldsymbol{\alpha}_{u} \times \boldsymbol{\alpha}_{v}\right|}$ be a Gauss map $N: S \rightarrow S^{2}$ of a regular surface S, associated to a point $p \in S$. Prove Rodrigues's formula: $\gamma(t)$ is a line of curvature if and only if

$$
\frac{d}{d t} N(\gamma(t))=\lambda(t) \gamma^{\prime}(t)
$$

for some differentiable function $\lambda(t)$. Prove further that the principle curvature in this case is $-\lambda(t)$.

3. Problem 3.

Let α, β, γ be real numbers such that $\alpha^{2}+\beta^{2}+\gamma^{2}=1$, and let K be a convex body in \mathbb{R}^{3}.
a) Use the fact that $h_{K}(\lambda(\alpha, \beta, \gamma))=\lambda h_{K}((\alpha, \beta, \gamma))$ for any $\lambda>0$ to obtain

$$
\alpha H_{\alpha}+\beta H_{\beta}+\gamma H_{\gamma}=H
$$

and

$$
\left\{\begin{array}{l}
\alpha H_{\alpha \alpha}+\beta H_{\alpha \beta}+\gamma H_{\alpha \gamma}=0, \\
\alpha H_{\beta \alpha}+\beta H_{\beta \beta}+\gamma H_{\beta \gamma}=0, \\
\alpha H_{\gamma \alpha}+\beta H_{\gamma \beta}+\gamma H_{\gamma \gamma}=0,
\end{array}\right.
$$

where $H=h_{K}$ and, for example, $H_{\alpha}=\frac{\partial h_{K}}{\partial \alpha}, H_{\alpha \beta}=\frac{\partial^{2} h_{K}}{\partial \alpha \partial \beta}$. Here K is such that all the derivatives make sense.
b) Let (x, y, z) be a point of tangency of the plane $\alpha x+\beta y+\gamma z=h_{K}((\alpha, \beta, \gamma))$ with K, i.e.,

$$
x=H_{\alpha}, \quad y=H_{\beta}, \quad x=H_{\gamma},
$$

and let R be a principle radius of curvature of the convex surface F which is a boundary of K near (x, y, z), i.e., the coordinates (ξ, η, ζ) of the corresponding center of curvature are

$$
\xi=H_{\alpha}-R \alpha, \quad \eta=H_{\beta}-R \beta, \quad \zeta=H_{\gamma}-R \gamma .
$$

Show that the vector $(d \xi, d \eta, d \zeta)$ is parallel to the vector (α, β, γ).
Hint: Move along the corresponding line of curvature of F near $(x, y, z)=\nabla h_{K}((\alpha, \beta, \gamma))$. Use Problem 2 assuming the normal to F is directed inward.
Conclude that

$$
\left\{\begin{array}{l}
H_{\alpha \alpha} d \alpha+H_{\alpha \beta} d \beta+H_{\alpha \gamma} d \gamma=R d \alpha+\lambda \alpha, \\
H_{\beta \alpha} d \alpha+H_{\beta \beta} d \beta+H_{\beta \gamma} d \gamma=R d \beta+\lambda \beta \\
H_{\gamma \alpha} d \alpha+H_{\gamma \beta} d \beta+H_{\gamma \gamma} d \gamma=R d \gamma+\lambda \gamma,
\end{array}\right.
$$

for some real number λ.
c) Multiply the above equalities by α, β and γ to observe that $\lambda=0$. Then prove that R satisfies

$$
\left|\begin{array}{ccc}
H_{\alpha \alpha}-R & H_{\alpha \beta} & H_{\alpha \gamma} \\
H_{\beta \alpha} & H_{\beta \beta}-R & H_{\beta \gamma} \\
H_{\gamma \alpha} & H_{\gamma \beta} & H_{\gamma \gamma}-R
\end{array}\right|=0 .
$$

Hint: Use a).
d) Reduce the above cubic (in R) equation to the quadratic one,

$$
R^{2}-\left(R_{1}+R_{2}\right) R+R_{1} R_{2}=0
$$

Prove that

$$
R_{1}+R_{2}=H_{\alpha \alpha}+H_{\beta \beta}+H_{\gamma \gamma}=\Delta h_{K}, \quad R_{1} R_{2}=K_{\alpha \alpha}+K_{\beta \beta}+K_{\gamma \gamma}
$$

where the matrix

$$
\left(\begin{array}{lll}
K_{\alpha \alpha} & K_{\alpha \beta} & K_{\alpha \gamma} \\
K_{\beta \alpha} & K_{\beta \beta} & K_{\beta \gamma} \\
K_{\gamma \alpha} & K_{\gamma \beta} & K_{\gamma \gamma}
\end{array}\right)
$$

is the one of the algebraic complements of the matrix of the second derivatives of H,

$$
\left(\begin{array}{lll}
H_{\alpha \alpha} & H_{\alpha \beta} & H_{\alpha \gamma} \\
H_{\beta \alpha} & H_{\beta \beta} & H_{\beta \gamma} \\
H_{\gamma \alpha} & H_{\gamma \beta} & H_{\gamma \gamma}
\end{array}\right) .
$$

Observe that $R_{1}((\alpha, \beta, \gamma)) R_{2}((\alpha, \beta, \gamma))=\frac{1}{K(x, y, z)}$ is the reciprocal of the Gaussian curvature K at the point $(x, y, z)=\nabla h_{K}$.
4. Problem 4*. Prove that on the surface of every C^{2}-regular convex body in \mathbb{R}^{3} there are at least two umbilical points.

