Harmonic Analysis and Convex Geometry, Fall 2013, September 6.

Instructor: Dmitry Ryabogin

Assignment 2.

1. Problem 1.

a) Let W be a convex set. A point $x \in W$ is called *exterior* if it does not lie on any segment with ends in W. Prove that the vertices of the polytope are the only exterior points of it.

b*) Prove that every non-empty compact convex set has an extreme point.

Hint: Use induction on dimension.

2. **Problem 2.** Let M be a polytope and let $W \subset V = \operatorname{vert} M$. Then $\operatorname{conv} W$ is a face of M if and only if $\operatorname{aff} W \cap \operatorname{conv} (V \setminus W) = \emptyset$ (here $\operatorname{aff} W$ stands for the *affine hull* of W).

3. Problem 3.

a) Prove that every ridge of a polytope is an intersection of two facets.

Hint: Let F_k be a facet of an *H*-polytope *M*. Then

$$F_k = H_k \cap \left(\bigcap_{j \neq k} H_j^+\right) = \bigcap_{j \neq k} (H_k \cap H_j^+).$$

Hence,

 $R = F_k \cap \operatorname{relbd} \left(H_k \cap H_j^+ \right) = F_k \cap H_k \cap H_j = K \cap H_k \cap H_j = F_k \cap F_j.$

b) Let $F = F^j$, be a proper j-face of a d-polytope M, dim $F^j = j$ and let $j \le k \le d-1$. Prove that F is an intersection of at least k - j + 1 k-faces containing F.

Hint: Prove at first that for any F there is a facet containing it: take $x \in \operatorname{relint} F^j$ and observe that x must belong to a supporting hyperplane H generating some facet F^{d-1} . Prove that $F^j \subset H$ and conclude that $F^j \subset F^{d-1}$. Then proceed by induction. Use a) to prove the second part of the theorem: each (k-1)-dimensional face of F^{k+1} is an intersection of two k-dimensional faces.

c) Let F be a face of a d-polytope $M \subset \mathbb{R}^d$, dim F = j. Prove that there exists a (d-j-1)-dimensional face F' of M such that dim conv $(F \cup F') = d$.

Hint: In the case $j \leq d-2$ use induction, the fact that each face of a polytope is contained in some facet and a).

4. **Problem 4*.** Let K be a convex body in \mathbb{R}^3 such that its orthogonal projections onto all planes (passing through the origin) are polygons. Prove that K is a polytope.