Harmonic Analysis and Convex Geometry, Fall 2013, September 6.

Instructor: Dmitry Ryabogin

Assignment 2.

1. Problem 1.

a) Let W be a convex set. A point $x \in W$ is called exterior if it does not lie on any segment with ends in W. Prove that the vertices of the polytope are the only exterior points of it.
b^{*}) Prove that every non-empty compact convex set has an extreme point.
Hint: Use induction on dimension.
2. Problem 2. Let M be a polytope and let $W \subset V=\operatorname{vert} M$. Then conv W is a face of M if and only if aff $W \cap \operatorname{conv}(V \backslash W)=\emptyset$ (here aff W stands for the affine hull of $W)$.

3. Problem 3.

a) Prove that every ridge of a polytope is an intersection of two facets.

Hint: Let F_{k} be a facet of an H-polytope M. Then

$$
F_{k}=H_{k} \cap\left(\bigcap_{j \neq k} H_{j}^{+}\right)=\bigcap_{j \neq k}\left(H_{k} \cap H_{j}^{+}\right) .
$$

Hence,

$$
R=F_{k} \cap \operatorname{relbd}\left(H_{k} \cap H_{j}^{+}\right)=F_{k} \cap H_{k} \cap H_{j}=K \cap H_{k} \cap H_{j}=F_{k} \cap F_{j} .
$$

b) Let $F=F^{j}$, be a proper j-face of a d-polytope $M, \operatorname{dim} F^{j}=j$ and let $j \leq k \leq d-1$. Prove that F is an intersection of at least $k-j+1 k$-faces containing F.

Hint: Prove at first that for any F there is a facet containing it: take $x \in \operatorname{rel} \operatorname{int} F^{j}$ and observe that x must belong to a supporting hyperplane H generating some facet F^{d-1}. Prove that $F^{j} \subset H$ and conclude that $F^{j} \subset F^{d-1}$. Then proceed by induction. Use a) to prove the second part of the theorem: each $(k-1)$-dimensional face of F^{k+1} is an intersection of two k-dimensional faces.
c) Let F be a face of a d-polytope $M \subset \mathbb{R}^{d}$, $\operatorname{dim} F=j$. Prove that there exists a ($d-j-1$)-dimensional face F^{\prime} of M such that dim conv $\left(F \cup F^{\prime}\right)=d$.
Hint: In the case $j \leq d-2$ use induction, the fact that each face of a polytope is contained in some facet and a).
4. Problem 4*. Let K be a convex body in \mathbb{R}^{3} such that its orthogonal projections onto all planes (passing through the origin) are polygons. Prove that K is a polytope.

