Harmonic Analysis and Convex Geometry, Fall 2013, September 27.

Instructor: Dmitry Ryabogin

Assignment 5.

1. Problem 1.

- a) Prove that any origin-symmetric polytope in \mathbb{R}^d is a projection of a linear image of the octahedron in \mathbb{R}^f . What is f?
- c) Prove that for a d-dimensional simplicial polytope P we have $\sum_{j=0}^{d} f_j(P) \leq 2^d f_{d-1}(P)$.
- 2. **Problem 2.** Prove that there are only five regular polytopes in \mathbb{R}^3 (a polytope is called *regular* if the amount of edges incident to each vertex is equal to the amount of faces incident to the vertex and all the vertices are equivalent).

3. Problem 3.

- a) Prove that any ellipsoid in \mathbb{R}^3 centered at the origin has a disc as one of its central sections (by the plane passing through the origin).
- b) Prove that any d-dimensional ellipsoid in \mathbb{R}^d centered at the origin has a k-dimensional ball as one of its central sections (by the k-dimensional subspace). What is k?
- 4. **Problem 4.** Let $C \subset \mathbb{R}^d$ be a cone starting at the origin, and let S^{d-1} be a unit sphere in \mathbb{R}^d , $S^{d-1} = \{x \in \mathbb{R}^d : |x| = 1\}$. Define a solid angle $\sigma(C)$ of C to be a (d-1)-volume of the intersection: $\sigma(C) := \operatorname{vol}_{d-1}(C \cap S^{d-1})$. Let v be a vertex of a convex polytope P in \mathbb{R}^d . Define the curvature ω_v of v to be a solid angle $\sigma(C^*)$ of the dual cone C^* of v, i.e., $C^* = \{x \in \mathbb{R}^d : x = \lambda \mathbf{n}_v, \lambda \geq 0\}$, where \mathbf{n}_v are the outer normals to the supporting hyperplanes of P at v.

Prove the Gauss-Bonnet Theorem: the sum of the curvatures of all the vertices of P is the (d-1)-volume of S^{d-1} .

5. **Problem 5*.** Let P be a polytope in \mathbb{R}^d containing the origin in its interior, and let F be an r-dimensional face of P, $0 \le r \le d-1$. Denote by V(F) an (r+1)-dimensional subspace containing F. The polytope P is called r-equatorial, if for every F, $P \cap V(F)$ is the union of r-dimensional faces of P (B_1^3 is 1-equatorial, B_∞^3 is not; any P as above is (d-1)-equatorial, and any origin-symmetric one is 0-equatorial). Prove that P is r-equatorial if and only if the (d-r-1)-dimensional faces of the (d-r)-dimensional faces of P^* occur in parallel pairs.