Harmonic Analysis and Convex Geometry, Fall 2013, October 4.

Instructor: Dmitry Ryabogin

Assignment 6.

1. Problem 1. Let $\Delta \subset \mathbb{R}^{3}$ be a tetrahedron. Prove that the following conditions are equivalent:
(i) all faces of Δ are congruent triangles,
(ii) all faces of Δ have equal perimeter,
(iii) all vertices of Δ have equal curvature,
(iv) the opposite edges of Δ have equal dihedral angles,
(v) all solid angles of Δ are equal.

Such Δ are called equihedral tetrahedra.
Hint: (ii) \Rightarrow (i) Write out equations for the edge lengths; (iii) \Rightarrow (i) From the GaussBonnet theorem, conclude that the curvature of each vertex is equal to π. Now write out the equations for the angle sums around each vertex and inside each face; (iv) \Rightarrow (i) Use an argument based on the second proof of the Gauss-Bonnet Theorem given in class; $(\mathrm{v}) \Rightarrow$ (iv) Write out equations for the solid angles in terms of dihedral angles.
2. Problem 2. Let $P \subset \mathbb{R}^{3}$ be a convex polytope. Denote by A and B the sums of all solid and dihedral angles, respectively. Prove that $2 B-A=2 \pi(|F|-2)$ where $|F|$ is the number of faces in P.

Hint: Sum up over vertices.
3. Problem 3. Let $P \subset \mathbb{R}^{3}$ be a convex polytope containing the origin in its interior. For a facet F of P, denote by $\alpha(F)$ the sum of the angles of F and by $\beta(F)$ the sum of the angles of the projection of F onto a unit sphere centered at the origin. Finally, let $\omega(F)=\beta(F)-\alpha(F)$. Prove that $\sum_{F \subset P} \omega(F)=4 \pi$.
4. Problem 4. Prove the theorem of Aleksandrov: Let $P, Q \subset \mathbb{R}^{3}$ be two combinatorially equivalent convex polytopes with equal corresponding face angles. Then they have equal corresponding dihedral angles.
5. Problem 5*. Two convex polytopes P and Q in \mathbb{R}^{3} are called parallel if they are combinatorially equivalent and the corresponding faces are parallel. Prove the theorem of Aleksandrov: Assume that the perimeters or areas of parallel faces of parallel polytopes are equal. Then, there exists $a \in \mathbb{R}^{3}$ such that $P+a=Q$.

