# Harmonic Analysis and Convex Geometry, Fall 2013, October 25. 

## Instructor: Dmitry Ryabogin

## Assignment 8.

## 1. Problem 1.

A boundary point $x$ of a convex body $K \subset \mathbb{R}^{n}$ is said to be singular if more than one supporting hyperplane of the body goes through it. If only one supporting hyperplane $H_{x}$ passes through $x$, the boundary point is called regular.
a) Prove that if a convex body has only regular boundary points, then its boundary can be mapped continuously onto the surface of the $n$-dimensional unit ball by means of equally directed supporting hyperplanes. If, in addition, $K \cap H_{x}=\{x\}$ for every boundary point $x \in K$, prove that this map is one to one.

Let $K$ be a convex body in $\mathbb{R}^{n}, n \geq 2$, and let $x$ be one of its boundary points. Consider the collection of rays emanating from $x$ which contain a point of the body different from $x$, and adjoint the accumulation points of the point set that arises. The resulting set is a convex cone with vertex $x$, which is called the projection cone of the body $K$ at the point $x$.
b) Prove that every supporting hyperplane passing through $x$ is a supporting hyperplane of the cone, and conversely.
c) Conclude that the projection cone can be obtained as the intersection of all the half-spaces containing the body $K$ whose boundary hyperplanes pass through $x$.
d) What is the projection cone at a regular point ?

## 2. Problem 2.

Let $K$ be an origin-symmetric convex body in $\mathbb{R}^{n}, n \geq 2$, let $F(x)=\|x\|_{K}$, let $x$ be a boundary point of $K$, and let $y$ be a variable point.
a) Prove that the points $y$ that satisfy $F^{\prime}(x ; y-x) \leq 0$ are exactly those that form the projection cone of the body at the point $x$.
b) Prove that if $x$ is regular, then $F^{\prime}(x ; y-x)$ must be a linear function of $y-x$.
c) Conclude that if a convex body has only regular boundary points, then its norm has continuous first partial derivatives.

## 3. Problem 3.

A normal cone (or a polar cone) of a convex body $K \subset \mathbb{R}^{n}, n \geq 2$, at the boundary point $x$ is obtained if one erects at $x$ the normals to all the supporting hyperplanes of $K$ at $x$ on the side turned away from the body. If the normal cone at $x$ is $(n-p)$ dimensional, $0 \leq p \leq n$, then $x$ is called a $p$-face point.
a) Prove that the projection cone at a $p$-face point $x$ contains a $p$-dimensional flat (affine subspace) going through $x$ and no flat of higher dimension.
b) Prove that if $F^{\prime}(x, y)$ has $n$ linearly independent linearity directions, then it is linear.
c) Let $F$ be as in Problem 2 and let $x$ be a $p$-face point of $K$. Prove that $F^{\prime}(x ; y)$ has, as a function of $y$, exactly $p+1$ linearly independent linearity directions, and conversely.
4. Problem 4*. Let $K$ be an origin-symmetric convex body in $\mathbb{R}^{n}, n \geq 3$. Assume also that all sections (by the hyperplanes passing through the origin) of $K$ are absolutely symmetric. Is it true that $K$ is a Euclidean ball?

