Harmonic Analysis and Convex Geometry, Fall 2013, November 8.

Instructor: Dmitry Ryabogin

Assignment 9.

1. Problem 1.

Given any subset E of \mathbb{R}^{d} and $\alpha \geq 0$, we define the exterior α-dimensional Hausdorff measure of E by $m_{\alpha}^{*}(E)=\lim _{\delta \rightarrow 0^{+}} \mathcal{H}_{\alpha}^{\delta}(E)$, where

$$
\mathcal{H}_{\alpha}^{\delta}(E):=\inf \left\{\sum_{k=1}^{\infty}\left(\operatorname{diam} F_{k}\right)^{\alpha}: E \subset \bigcup_{k=1}^{\infty} F_{k}, \quad \operatorname{diam} F_{k} \leq \delta \quad \forall k\right\}
$$

and $\operatorname{diam} S=\sup _{x, y \in S}|x-y|$ stands for the diameter of S.
a) Let $0<\delta_{1}<\delta_{2}$. Prove that $\mathcal{H}_{\alpha}^{\delta_{1}} \geq \mathcal{H}_{\alpha}^{\delta_{2}}$. Conclude that the above limit exists (might be infinite).
b) Prove that $\mathcal{H}_{\alpha}^{\delta}(E) \leq m_{\alpha}^{*}(E)$.
c) Prove that $E_{1} \subset E_{2}$ implies $m_{\alpha}^{*}\left(E_{1}\right) \leq m_{\alpha}^{*}\left(E_{2}\right)$.
d) Prove that $m_{\alpha}^{*}\left(\bigcup_{j=1}^{\infty} E_{j}\right) \leq \sum_{j=1}^{\infty} m_{\alpha}^{*}\left(E_{j}\right)$ for any countable family of sets in \mathbb{R}^{d}.

Hint: For each j choose a cover $\left\{F_{j, k}\right\}_{k=1}^{\infty}$ of E_{j} by sets of diameter less than δ such that

$$
\sum_{k=1}^{\infty}\left(\operatorname{diam} F_{j, k}\right)^{\alpha} \leq \mathcal{H}_{\alpha}^{\delta}\left(E_{j}\right)+\frac{\epsilon}{2^{j}} .
$$

Then use the fact that $\bigcup_{j, k} F_{j, k}$ is a cover of E.
e) If the distance $d\left(E_{1}, E_{2}\right)>0$, then $m_{\alpha}^{*}\left(E_{1} \cup E_{2}\right)=m_{\alpha}^{*}\left(E_{1}\right)+m_{\alpha}^{*}\left(E_{2}\right)$.

Hint: To show that $m_{\alpha}^{*}\left(E_{1} \cup E_{2}\right) \geq m_{\alpha}^{*}\left(E_{1}\right)+m_{\alpha}^{*}\left(E_{2}\right)$ fix $0<\epsilon<d\left(E_{1}, E_{2}\right)$. Given any cover of $E_{1} \cup E_{2}$ with sets F_{j} of diameter less than $0<\delta<\epsilon$, put $F_{j}^{\prime}=E_{1} \cap F_{j}$, $F_{2}^{\prime \prime}=E_{2} \cap F_{j}$ and use

$$
\sum_{j}\left(\operatorname{diam} F_{j}^{\prime}\right)^{\alpha}+\sum_{l}\left(\operatorname{diam} F_{l}^{\prime \prime}\right)^{\alpha} \leq \sum_{k=1}^{\infty}\left(\operatorname{diam} F_{k}\right)^{\alpha} .
$$

f) Conclude (do not prove, google if necessary) that since m_{α}^{*} satisfies all the properties of the metric Caratheodory exterior measure, it is a countably additive measure when restricted to the Borel sets. This measure (we will denote it m_{α}) is called the α dimensional Hausdorff measure.
g) Prove that the α-dimensional Hausdorff measure is invariant under translations and rotations. Moreover, $\forall \lambda>0, m_{\alpha}(\lambda E)=\lambda m_{\alpha}(E)$.
h) Prove that the quantity m_{0}^{*} counts the number of points in $E \subset \mathbb{R}$, while $m_{1}(E)=$ $m(E)$ for all Borel sets $E \subset \mathbb{R}$ (here m denotes the usual Lebesgue measure).
i) Prove that $m_{d}(E) \leq 2^{d} c_{d} m(E)$.

Hint: Let $E \subset \bigcup_{j} F_{j}$ be a covering with $\sum_{j}\left(\operatorname{diam} F_{j}\right)^{d} \leq m_{d}(E)+\epsilon$. Find a closed ball B_{j} centered at a point of F_{j} so that $B_{j} \supset F_{j}$ and $\operatorname{diam} B_{j}=2 \operatorname{diam} F_{j}$. To get the result, use that

$$
m(E) \leq \sum_{j} m\left(B_{j}\right)=\sum_{j} c_{d}\left(\operatorname{diam} B_{j}\right)^{d}=2^{d} c_{d} \sum_{j}\left(\operatorname{diam} F_{j}\right)^{d} \leq 2^{d} c_{d}\left(m_{d}(E)+\epsilon\right) .
$$

2. Problem 2*. Let K be a convex body in $\mathbb{R}^{d}, d \geq 2$. The width $w_{K}(\theta)$ of K in the direction $\theta \in S^{d-1}$ is defined as $h_{K}(\theta)+h_{K}(-\theta)$. The body K is called of constant width if w_{K} is constant (independent of the direction θ). Prove that in the two-dimensional case among the bodies of the given width the Reuleaux triangle is the one of the smallest area. What is the body of the given constant width of the smallest volume/surface area in $\mathbb{R}^{d}, d \geq 3$?
