ON A PAPER OF HUDSON.
GEORGIY ARUTYUNYANTS AND DMITRY RYABOGIN

ABSTRACT. We present the detailed proof of Hudson’s result in [1].

1. INTRODUCTION

Let Q € L'(S"), f € L'(R?) be nonnegative functions and let B,(z) be a ball of

radius r with the center at z. Consider the maximal operator

Vol i‘i%?/f (=)

It was proved ([2], [3], [4]) that © € Llog L(S") implies a weak-type (1,1) for M.
It is still an open question whether the Llog L(S') condition can be weakened to
L'(S"). In this note we present the Hudson’s result proved in [1], which shows that
Mg has a weak type (1,1) for some Q ¢ L'log L(S'). For example, one can take

_ _ Xea®)
Qwr,w2) = g <x1> » 9(0) = 0log*(0/2) "

More precisely, we have
Theorem (Hudson). Let g € L'([0,1]) be monotonically decreasing, such that
0g(0) is monotonically increasing, and let Q(x1,x9) = g(xo/x1). Then

(1) AM{z € R?: Maf(z) > M} < e(llgllerqoay + 1) lgllz o, /111

The core of the proof is Lemma 2. It represents an independent interest and might
aid the study of the general case Q € L'(S").

All results can be generalized to higher dimensions.

2. SELECTION PROPERTY.

The following definition was introduced by Hudson.
Definition. We say that € has the selection property if for any measurable set D C
R* (0 < |D| < o0) and any positive measurable function r(z) defined on D, there is
a measurable subset £/ C D such that

(2) |E| > a| D],
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3) smoanm= [ o(f2L) <

[z —yl/ r*(z)
EnBr(z)(y)

for almost every y € R
Constants here do not depend on r(z), D, E.

Lemma 1. If Q has the selection property, then Mg is of weak type (1,1).
Proof. Let D = {z € R*: Mqf(z) > A\}. We may assume that D is bounded.

Then
d _

|D|<—|E|<—/Mgf d:c<c)\/ * /f * U)dy—
a |z —yl

I

sfrow | (st

EnB,
a

Thus, to prove the Theorem it is enough to show that Q satisfies the selection
property. We emphersize that the construction of F involves no restriction on €
L'(S') and a ~ 1/1lgll 21 o7y All geometrical restrictions come from the estimates

of (3) with A ~ HgHLl([OJ]).

3. THE DIRAC MASS ESTIMATE

The main idea of the proof is to replace g by Dirac mass § near the spike. Observe
that in this case

@ S(k.8.7)(0) = T

{z€d:0<e1—y1 <r(z1,y2), T2=y2 }
Claim 1 . If g is replaced by a Dirac mass supported al 0, then Q has the selection
property. More precisely, for any posiltive measurable function r(z) defined on a set
D C R? of finite measure there is a sel DCD satisfying the following properties

|D| > ¢|D], 5(5,5,7")(3/) <C for a.e. y € R%

This claim follows from the Fubini theorem and the following one-dimensional
result.

Lemma 2. Let r(t) be any positive measurable function on a measurable set D C
R'(|D| < 00). Then there exists a measurable subset D C D such that

- 1
(5) D] > 551D
dt .
(6) F(y) = / W <C for almostally € R".
r(t

Dn{o<t—y<r(t)}
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Proof. We will define set D as a union of sets {D;}22,. The procedure described
below is a modification of the Calderén-Zygmund stopping time argument. We con-
struct D; as follows

D; = {r €D |z €qe€ iz and r(z) > |¢|}U

U{z € D|z¢qe@Qimqand r(z) > 27"},
where Q;_, is a system of dyadic intervals which we define by induction.

Set Q_; = 0 and assume that Qq, ..., Q;_; have already been constructed. Consider
the net of dyadic intervals ¢ with |¢| = 27*. The construction of @; consists of two
steps.

Step 1: We choose from the net all those intervals which do not intersect intervals
from @;—1 and for which one of the following conditions holds:

(a) |Q|_1/Fi($)d$ >1/2,

q

ro= [ 5

D;n{o<t—z<r(t)}

[Ding|l 1
(b) m >3

Step 2: We add all neighbors from the net to the intervals chosen before (@Q;—1 U {
intervals chosen by step 1 }).

Set ; = Q;_y U { intervals chosen by step 1 } U { intervals chosen by step 2 }. If
interval ¢ satisfies (@) and (b) we say that it is chosen by (a).

We claim that U2, D; = D is the desired set. First of all

where

(7) DcCDC U qg.
7€Q:,1=0

The first inclusion is obvious. The second one follows from the following argument.
Fix any z € D. Assume that r(z) > 27 for some i and x does not belong to any
cube from @;_; (otherwise we are done). Then z € DZ Since almost all points of DZ
are points of density, there is a dyadic interval ¢* 3 z, |¢*| = 277, 5 > i and such that
|D; N q*|/|q*| > 1/2. Since D; C D;, |D; N q*|/|q*| > 1/2. Thus by (b), ¢* C q € Q;.

So (5) will easily follow from (7) and

(8) Y lal<20(D).
qEini:O
To prove (8), let us divide the system {Q;}{2, into three disjoint subsystems:
K, = { intervals chosen by condition (@)}, K; = { intervals chosen by condition (b)},
K3 = { intervals chosen by step 2 }. Then it is obvious that
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a4 Dl

qEIX/’g qej{l ,qEI\/yQ

Moreover

Y= Y W<y Y hnds<

q€K> i=0 q€(Q:\Qi—1)NK> =0 g€(Q:\Qi—1)NK>

QZ Z 1D ng| <2/D|.
i=0 ¢€(Qi\Qi—1)NK>
On the other hand

ngi > |q|§2§: 3 /Fi(x)d:z:g

qEK, 1=0 ¢€(Qi\Qi-1)NK, =0 ¢€(Qi\Qi-1)NK1

zi >y /F(:z:)dx < Q/F(x)d:n =

1=0 ¢€(Q:\Q:i—1)NK q R

:2/ / %dsz/@ / dxdt < 2|D).

Dn{o<t—z<r(t)} D {0<t—z<r(t)}

So we have
o0

oodal= Y el + D lal+ >l <

7€Qi,1=0 geK, € K2 €Kz

<50 lal+ > lal) < 200D
g€ K qEK>
and it proves (5).

It remains to show (6). At first we observe that F(y) > 1/2 implies y € ¢ € @;
for some ¢ > 0. Indeed, fix any y such that F(y) > 1/2. Since DJ- C Dj+1 we have
F;(y) > 1/2 for sufficiently large j. By the differentiability of integrals, there is a
dyadic interval ¢*, such that |¢*|7" [ Fj(z)dz > 1/2 and |¢*| = 27", i > j. Now

ot
Dj C D; implies |¢*|™" [ Fi(z)dz > 1/2 and (a) gives ¢* C q € Q.
o

Now we decompose F(y) into two parts. The first part will be estimated pointwise,
the second one — by mean. Namely

dt dt
Fly) = / O / —— = Fu(y) + Fu(y),

Ln{o<t—y<r(t)} Hn{o<t—y<r(t)}
where, L = DN [y,y + 10%|q]] and H = D N [y + 10%|q], o0). First, let us show that
(9) Fr(y) < C.
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To do so, let us split L into two subsets I; and Ly, where L; = DN [y + %, y+10%]q|]

and L2=Dﬂ[y,y+%]. Since r(t) >t —y > |g—|fort€Llﬂ{t|0<t—y<r(t)},
it is easy to see that

dt 2 2
Fr,(y) = / ﬂ< ] / dt < m102|Q|SC-

Lin{0<t—y<r(t)} Lin{o<t—y<r(t)}

On the other hand if t € Ly then t € ¢ € Q; or t € ¢ € ;11 because of the step 2
in construction of Q;41. In any case, r(t) > |g—| and

N B
Lon{0<t—y<r(t)} Yy

Combining these two estimates, we get (9).
To finish the proof of the lemma, we should show that

(10) Fuly) < C

To prove (10), it is enough to show that Fppg,_,(y) < C and Fg,_ (y) < C, where
Hioy = Doy N [y + 10%|q]|, 00). .. :

Observe that Frpg, ,(y) = 0. Indeed, for any ¢ € D\ D;_y, r(t) < 27! we have
D\ Di_i N[y + 10%|gl,c0)N{t| 0 <t —y <r(t)} = 0.

What is left to show is
(11) Fy,_, <C.

Let ¢* be the closest dyadic interval to ¢ from the right with |¢*| = 27"+, Since
forany £ € ¢*, HoiN{t|0<t—y<r(t)} C Hiy N{t] 0 <t —¢& < r(l)}, we have

IUR ORI Ty By

H;_1n{t| 0<t=€<r(t)} g% H;_1n{0<t—=¢<r(t)}

Observe that
GcNp=10 for any p € QQ;_» U {intervals choisen by step 1 during stages — 1}.

Otherwise, by step 2 ¢ would be covered by some interval chosen on stage [ < — 1.
This contradicts the choice of g. Thus
So by (12) and (a) in the construction we have

< |/ / %dﬁ < |ql*| */Fi_l(g)df < %

" Hi_1n{0<t—¢<r(t)} q

Fpy,

2 — 1
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4. AUXILIARY RESULTS

The following result is an analogue of the Calderén-Zygmund stopping time pro-
cedure. Below [(q) denotes the sidelength of a dyadic cube g.
Claim 2 . Let Q € L'(S"), and lel r(x) be any positive measurable function defined
on a set G C R? of finite measure. Then there exist two systems of sets

{QitZy  and  {E}Z,,
where Q; is a system of disjoint dyadic cubes with 1(q) > 27", and
Ei= Upq {z € GNq:r(z) > U(q)} Ufe € G\ Qica i 7(x) > 27}
such that the following holds:
(13) G CUZ,Q:
|G|

14 UiZy Fil > )
. = B2 S0l + 1)

for any ancestor G of q € Q);, and for any neighbor ¢ of any ancestor of q € ();, we
have

1

1
(15) o /jS(EZ-,Q,r)(y)dy <3

We sel
Q = UZ,Q;, E=UZ E, =Ugeg{z € GNqg:r(z)>I(q)}.

Proof of Claim 2. The construction of E;, Q; repeats the construction of D;, Q; in
Lemma 2. One has only to replace the condition (a) in the described stopping time

procedure by
1 / 1
— | S(E;.,Q,r)(y)dy > —.
o [ S0y > 5
q

The proof of (13), (14) is similar to the proof of (7), (8). Relation (15) follows by
reasons which are similar to those presented at the end of Lemma 2 (see the estimate

for Fy,_,).
O
Claim 3 . Let Q € L'(S") and let S(E,Q,r)(y) > 1/2. Theny € Q.

Proof of Claim 3. Since FE; C E;y, we have S(E;,Q,r)(y) > 1/2 for suffi-
ciently large 7. By the differentiation of integrals 1/|¢*| fq* S(E;, Q,r)(y)dy > 1/2

for some dyadic cube ¢* > y with /(¢*) = 277,57 > i. Now F; € F; implies
1/]q*| fq* S(E;,Q,r)(y)dy > 1/2 and (a) gives ¢* C q € Q).

O

The proof of the following claim is based on the fact that r(z) ~ [(¢) near cube ¢

containing y.
Claim 4 . Let Q € L'(S") and lel y € q € Q; for some i > 0. Then

(16) S(EN Bioig)(y): L r)(y) < O Qs
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Proof of Claim 4. Remind that
E=UpofreGng: r(z)>1(q)},

and

T —y dx
S(E 0 B0, r)0) = [ 0(220) S
i EAB, o) Brog ) \NT Yl ()

Now z € EN B,(z)(y) implies r(x) > I(q)/2. Indeed, this is obvious if |z —y| > I(q) /2,
since r(z) > |z —y|. If |[x —y| < I(q)/2, then either € q or z belongs to the neighbor
g of g with I(q) > l(q)/2 (use Step 2). But = € E, so r(z) > ().

This gives

[ T —
S8 0 B (0,200 < (2 [ . Q( y) de = C Qs
101(q)\Y

|z —yl

5. ESTIMATES ON THE EXCEPTIONAL SET

In this section all proofs strongly depend on the geometric properties of ¢ an-
nounced in the Theorem.

The following claim is based on Claim 1 and Claim 2. Let D be any set of finite
measure. We apply Claim 1 to get D. Now, by Claim 2 we get F from D (take
G = D).

Claim 5 . Let y € g € Q; for some 1 and let

(17) P=AzcE:y<z3<y+2l(q),z1 >y +21(q)}

Suppose also that g € L'(]0,1]) and 0 g(8) is an increasing function. Then

(18) S(P, Q) (y) < cllglln o

Proof of Claim 5. Observe that € P N B,()(y) implies
200q) Lz =y < |z —y| < r(z).

This , together with the fact that 6 g(6) is increasing gives

(19) (o) <o Gir)

By (19) we have
(:cg—y2> dr < 1 (:cg—y2> dr
) g zy—y1 ) r¥(z) ~ 21(q) o g 2l(q) ) r(z)

S(P,Q.1)(y)
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Now we apply the Fubini Theorem to the right-hand side of the above inequality and
observe that it does not exceed

y2+21(q)
1 / <.’E2 — y2> d dI]
— T EE—
21(q) I\ 21(q) ) (1, 72)
Y2 {z1>y1+20(g): € PNB,(4)(y)}

Since P C F C 5, the inner integral is bounded by Claim 1. It remains to make a
substitution z, — y2 = 2[(g) # in the outer integral to get

y2+21(q)

S(P,Q,r)(y) < QZEq) / g (21@?2) dzy = c/] g(0)do.

Y2

The following statement is an analogue of (10).
Claim 6 . Let y € g € Q; for some 1 and let g € L'([0,1]) be decreasing. Then

(20) S(H, Q,r)(y) < Cllgllo)

where H = E\ (P U Bigyg)(y))-
Proof of Claim 6. Let H,_y = HN F;_;. We show

Ne S(H N\ Hi—y, Q,7)(y) < Cllgllzo.-

3 S(Hizi, Q1) (y) < Clgllrrgo,- _

N. By the definition of F;_;, we may assume that r(z) < 27**' = 2/(g). On the
other hand, by the reasons which are similar to those in the proof of Claim 4, we
have I(q) < r(z). This gives XN.

3. We claim that

1
(21) S(Hi—1,Q7T)(y) <c m S(Hi—l,ﬂar)(f) dg,
q*
where ¢* has the same center as ¢, and [(¢*) = 3I(q).
The above relation reads as follows:

Lo — Yo dr 1 (.’L’Q — 52) dz
<ec— d .
g (fﬁl - y1> ri(z) g /q i{_ / g =& ) r(z)

1—1 nBT(I) (f)

Hi—l rjBr(aﬁ) (y)

By Fubini Theorem,

[ e = = B = S K

Hi—l ﬂBT(z)(y) Hi_1 q* nBr(z)(r)

Thus, to show (21) it is enough to prove that for every x € H;_y N B,(;(y), we have

T2 — Y2 1 1172—52
c dE€.
(22) g <$1 — y1> = | / g <$1 — fl) J

7* NBy () (¢

In fact, it is enough to prove the last inequality with K instead of ¢*, where K C ¢*:
K| > clq].
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Fix any z € H;_y N B,(y)(y). Define K(z) = {£ € ¢*, lying above the line [, }.
Since ¢(#) is decreasing observe that

g (Z — :) <g (Z’ — gj) VE € K ().

Now let K = Nuem,_, nB, (4 (1) K(z). By elementary geometry |K| > ¢|q¢*|. This gives
(22). Thus we proved (21).

It remains to show that the mean in the right-hand side of (21) is finite. Let N(q)
denote the set of dyadic neighbors of g of the sidelength [(g). Then observe that

q" C M = N(father of ¢) U father of q.
Hence there is a cube ¢ € M such that

1 1
(23) |q*|q/S(Hi_1,Q,r)(§) At < e q/S(HZ-_hQ,r)(f) de.

We claim that the mean in the right-hand side of (23) is bounded by 1/2. Indeed,
observe that
Ggnp=10 Vp € Q;—y U {intervals choisen by step 1 during stagei — 1}.

Otherwise, by step 2 ¢ would be covered by some cube chosen on stage [ < 7 —1,
which contradicts the choice of g. This means that

1 1 1

= [ stmaen©d < o [ sEaan©d <
q q

by (a). The proof of 3 is finished.

6. PROOF OF THE THEOREM
By Claim 3 it is enough to consider y € Q; for some ¢ > 0. We have
S(E,Q,r)(y) = S(E N Bioyg)(y), Qr)(y) + S(P,Q,r)(y) + S(H,Q,7)(y)
where P and H are as above. Now claims 4,5, and 6 complete the proof.

O
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