ON A PAPER OF HUDSON.

GEORGIY ARUTYUNYANTS AND DMITRY RYABOGIN

ABSTRACT. We present the detailed proof of Hudson's result in [1].

1. Introduction

Let $\Omega \in L^1(S^1)$, $f \in L^1(\mathbf{R}^2)$ be nonnegative functions and let $B_r(x)$ be a ball of radius r with the center at x. Consider the maximal operator

$$M_{\Omega}f(x) = \sup_{r>0} \frac{1}{r^2} \int_{B_r(x)} f(y) \Omega\left(\frac{x-y}{|x-y|}\right) dy.$$

It was proved ([2], [3], [4]) that $\Omega \in L \log L(S^1)$ implies a weak-type (1,1) for M_{Ω} . It is still an open question whether the $L \log L(S^1)$ condition can be weakened to $L^1(S^1)$. In this note we present the Hudson's result proved in [1], which shows that M_{Ω} has a weak type (1,1) for some $\Omega \notin L^1 \log L(S^1)$. For example, one can take

$$\Omega(x_1, x_2) = g\left(\frac{x_2}{x_1}\right), \quad g(\theta) = \frac{\chi_{(0,1]}(\theta)}{\theta \log^2(\theta/2)}.$$

More precisely, we have

Theorem (Hudson). Let $g \in L^1([0,1])$ be monotonically decreasing, such that $\theta g(\theta)$ is monotonically increasing, and let $\Omega(x_1, x_2) = g(x_2/x_1)$. Then

(1)
$$\lambda |\{x \in \mathbf{R}^2 : M_{\Omega}f(x) > \lambda\}| \leq c (\|g\|_{L^1([0,1])} + 1) \|g\|_{L^1([0,1])} \|f\|_1.$$

The core of the proof is Lemma 2. It represents an independent interest and might aid the study of the general case $\Omega \in L^1(S^1)$.

All results can be generalized to higher dimensions.

2. Selection Property.

The following definition was introduced by Hudson.

Definition. We say that Ω has the selection property if for any measurable set $D \subset \mathbf{R}^2$ $(0 < |D| < \infty)$ and any positive measurable function r(x) defined on D, there is a measurable subset $E \subseteq D$ such that

$$(2) |E| \ge a|D|,$$

¹⁹⁹¹ Mathematics Subject Classification. Primary 42B20. Secondary 42E30. Key words and phrases. Maximal functions.

(3)
$$S(E, \Omega, r)(y) \equiv \int_{E \cap B_{r(x)}(y)} \Omega\left(\frac{x - y}{|x - y|}\right) \frac{dx}{r^2(x)} \le A$$

for almost every $y \in \mathbf{R}^2$.

Constants here do not depend on r(x), D, E.

Lemma 1. If Ω has the selection property, then M_{Ω} is of weak type (1,1).

Proof. Let $D = \{x \in \mathbf{R}^2 : M_{\Omega}f(x) > \lambda\}$. We may assume that D is bounded. Then

$$|D| \leq \frac{1}{a}|E| \leq \frac{1}{a\lambda} \int_{E} M_{\Omega}f(x)dx \leq \frac{c}{a\lambda} \int_{E} \frac{dx}{r^{2}(x)} \int_{B_{r(x)}(x)} f(y) \Omega\left(\frac{x-y}{|x-y|}\right) dy = \frac{c}{a\lambda} \int_{\mathbf{R}^{2}} f(y)dy \int_{E\cap B_{r(x)}(y)} \Omega\left(\frac{x-y}{|x-y|}\right) \frac{dx}{r^{2}(x)} \leq c \frac{A}{a} \frac{\|f\|_{1}}{\lambda}.$$

Thus, to prove the Theorem it is enough to show that Ω satisfies the selection property. We empherize that the construction of E involves no restriction on $\Omega \in L^1(S^1)$ and $a \simeq 1/\|g\|_{L^1([0,1])}$. All geometrical restrictions come from the estimates of (3) with $A \simeq \|g\|_{L^1([0,1])}$.

3. The Dirac mass estimate

The main idea of the proof is to replace g by Dirac mass δ near the spike. Observe that in this case

(4)
$$S(\clubsuit, \delta, r)(y) = \int_{\{x \in \clubsuit: 0 < x_1 - y_1 < r(x_1, y_2), x_2 = y_2\}} \frac{dx_1}{r(x_1, y_2)}.$$

Claim 1. If g is replaced by a Dirac mass supported at 0, then Ω has the selection property. More precisely, for any positive measurable function r(x) defined on a set $D \subset \mathbf{R}^2$ of finite measure there is a set $\widetilde{D} \subseteq D$ satisfying the following properties

$$|\widetilde{D}| > c|D|, \qquad S(\widetilde{D}, \delta, r)(y) \le C \qquad for \ a. \ e. \qquad y \in \mathbf{R}^2.$$

This claim follows from the Fubini theorem and the following one-dimensional result.

Lemma 2. Let r(t) be any positive measurable function on a measurable set $D \subset \mathbf{R}^1(|D| < \infty)$. Then there exists a measurable subset $\widetilde{D} \subset D$ such that

$$|\tilde{D}| > \frac{1}{20}|D|$$

(6)
$$F(y) = \int_{\widetilde{D} \cap \{0 < t - y < r(t)\}} \frac{dt}{r(t)} \le C \quad for \ almost \ all \ y \in \mathbf{R}^1.$$

Proof. We will define set \tilde{D} as a union of sets $\{\tilde{D}_i\}_{i=0}^{\infty}$. The procedure described below is a modification of the Calderón-Zygmund stopping time argument. We construct \tilde{D}_i as follows

$$\tilde{D}_i = \{x \in D \mid x \in q \in Q_{i-1} \text{ and } r(x) > |q|\} \cup$$

$$\cup \{x \in D \mid x \notin q \in Q_{i-1} \text{ and } r(x) > 2^{-i}\},\$$

where Q_{i-1} is a system of dyadic intervals which we define by induction.

Set $Q_{-1} = \emptyset$ and assume that $Q_0, ..., Q_{i-1}$ have already been constructed. Consider the net of dyadic intervals q with $|q| = 2^{-i}$. The construction of Q_i consists of two steps.

Step 1: We choose from the net all those intervals which do not intersect intervals from Q_{i-1} and for which one of the following conditions holds:

(a)
$$|q|^{-1} \int_{a} F_i(x) dx > 1/2,$$

where

$$F_i(x) = \int_{\tilde{D}_i \cap \{0 < t - x < r(t)\}} \frac{dt}{r(t)},$$

$$(b) \quad \frac{|\tilde{D}_i \cap q|}{|q|} > \frac{1}{2}.$$

Step 2: We add all neighbors from the net to the intervals chosen before $(Q_{i-1} \cup \{$ intervals chosen by step 1 $\}$).

Set $Q_i = Q_{i-1} \cup \{$ intervals chosen by step $1 \} \cup \{$ intervals chosen by step $2 \}$. If interval q satisfies (a) and (b) we say that it is chosen by (a).

We claim that $\bigcup_{i=0}^{\infty} \tilde{D}_i = \tilde{D}$ is the desired set. First of all

(7)
$$\tilde{D} \subset D \subset \bigcup_{q \in Q, i=0}^{\infty} q.$$

The first inclusion is obvious. The second one follows from the following argument. Fix any $x \in D$. Assume that $r(x) > 2^{-i}$ for some i and x does not belong to any cube from Q_{i-1} (otherwise we are done). Then $x \in \tilde{D}_i$. Since almost all points of \tilde{D}_i are points of density, there is a dyadic interval $q^* \ni x$, $|q^*| = 2^{-j}$, $j \ge i$ and such that $|\tilde{D}_i \cap q^*|/|q^*| > 1/2$. Since $\tilde{D}_i \subseteq \tilde{D}_j$, $|\tilde{D}_j \cap q^*|/|q^*| > 1/2$. Thus by (b), $q^* \subseteq q \in Q_j$. So (5) will easily follow from (7) and

(8)
$$\sum_{q \in Q_{i,i=0}}^{\infty} |q| \le 20|\tilde{D}|.$$

To prove (8), let us divide the system $\{Q_i\}_{i=0}^{\infty}$ into three disjoint subsystems: $K_1 = \{ \text{ intervals chosen by condition } (a) \}, K_2 = \{ \text{ intervals chosen by condition } (b) \}, K_3 = \{ \text{ intervals chosen by step 2 } \}.$ Then it is obvious that

$$\sum_{q \in K_3} |q| \le 4 \sum_{q \in K_1, q \in K_2} |q|.$$

Moreover

$$\sum_{q \in K_2} |q| = \sum_{i=0}^{\infty} \sum_{q \in (Q_i \setminus Q_{i-1}) \cap K_2} |q| \le 2 \sum_{i=0}^{\infty} \sum_{q \in (Q_i \setminus Q_{i-1}) \cap K_2} |\tilde{D}_i \cap q| \le 2 \sum_{i=0}^{\infty} \sum_{q \in (Q_i \setminus Q_{i-1}) \cap K_2} |\tilde{D} \cap q| \le 2 |\tilde{D}|.$$

On the other hand

$$\sum_{q \in K_{1}} |q| \leq \sum_{i=0}^{\infty} \sum_{q \in (Q_{i} \setminus Q_{i-1}) \cap K_{1}} |q| \leq 2 \sum_{i=0}^{\infty} \sum_{q \in (Q_{i} \setminus Q_{i-1}) \cap K_{1}} \int_{q} F_{i}(x) dx \leq 2 \sum_{i=0}^{\infty} \sum_{q \in (Q_{i} \setminus Q_{i-1}) \cap K_{1}} \int_{q} F(x) dx \leq 2 \int_{R} F(x) dx = 2 \int_{R} \int_{\tilde{D} \cap \{0 < t - x < r(t)\}} \frac{dt}{r(t)} dx = 2 \int_{\tilde{D}} \int_{\{0 < t - x < r(t)\}} dx dt \leq 2 |\tilde{D}|.$$

So we have

$$\sum_{q \in Q_i, i=0}^{\infty} |q| = \sum_{q \in K_1} |q| + \sum_{q \in K_2} |q| + \sum_{q \in K_3} |q| \le 5(\sum_{q \in K_1} |q| + \sum_{q \in K_2} |q|) \le 20|\tilde{D}|$$

and it proves (5).

It remains to show (6). At first we observe that F(y) > 1/2 implies $y \in q \in Q_i$ for some $i \geq 0$. Indeed, fix any y such that F(y) > 1/2. Since $\tilde{D}_j \subset \tilde{D}_{j+1}$ we have $F_j(y) > 1/2$ for sufficiently large j. By the differentiability of integrals, there is a dyadic interval q^* , such that $|q^*|^{-1} \int_{q^*} F_j(x) dx > 1/2$ and $|q^*| = 2^{-i}$, $i \geq j$. Now

$$\tilde{D}_j \subset \tilde{D}_i$$
 implies $|q^*|^{-1} \int_{q^*} F_i(x) dx > 1/2$ and (a) gives $q^* \subseteq q \in Q_i$.

Now we decompose F(y) into two parts. The first part will be estimated pointwise, the second one - by mean. Namely

$$F(y) = \int_{L \cap \{0 < t - y < r(t)\}} \frac{dt}{r(t)} + \int_{H \cap \{0 < t - y < r(t)\}} \frac{dt}{r(t)} = F_L(y) + F_H(y),$$

where, $L = \tilde{D} \cap [y, y + 10^2 |q|]$ and $H = \tilde{D} \cap [y + 10^2 |q|, \infty)$. First, let us show that (9) $F_L(y) < C$.

To do so, let us split L into two subsets L_1 and L_2 , where $L_1 = \tilde{D} \cap [y + \frac{|q|}{2}, y + 10^2 |q|]$ and $L_2 = \tilde{D} \cap [y, y + \frac{|q|}{2}]$. Since $r(t) > t - y \ge \frac{|q|}{2}$ for $t \in L_1 \cap \{t \mid 0 < t - y < r(t)\}$, it is easy to see that

$$F_{L_1}(y) = \int_{\substack{L_1 \cap \{0 < t - y < r(t)\}}} \frac{dt}{r(t)} \le \frac{2}{|q|} \int_{\substack{L_1 \cap \{0 < t - y < r(t)\}}} dt \le \frac{2}{|q|} 10^2 |q| \le C.$$

On the other hand if $t \in L_2$ then $t \in q \in Q_i$ or $t \in \tilde{q} \in Q_{i+1}$ because of the step 2 in construction of Q_{i+1} . In any case, $r(t) > \frac{|q|}{2}$ and

$$F_{L_2}(y) = \int_{L_2 \cap \{0 < t - y < r(t)\}} \frac{dt}{r(t)} \le \frac{2}{|q|} \int_{y}^{y + \frac{|q|}{2}} dt = 1.$$

Combining these two estimates, we get (9).

To finish the proof of the lemma, we should show that

$$(10) F_H(y) \le C$$

To prove (10), it is enough to show that $F_{H\backslash H_{i-1}}(y) \leq C$ and $F_{H_{i-1}}(y) \leq C$, where $H_{i-1} = \tilde{D}_{i-1} \cap [y+10^2|q|,\infty)$.

Observe that $F_{H \setminus H_{i-1}}(y) = 0$. Indeed, for any $t \in \tilde{D} \setminus \tilde{D}_{i-1}$, $r(t) \leq 2^{-i+1}$, we have $\tilde{D} \setminus \tilde{D}_{i-1} \cap [y+10^2|q|,\infty) \cap \{t \mid 0 < t-y < r(t)\} = \emptyset$.

What is left to show is

$$(11) F_{H_{i-1}} \le C.$$

Let q^* be the closest dyadic interval to q from the right with $|q^*| = 2^{-i+1}$. Since for any $\xi \in q^*$, $H_{i-1} \cap \{t | 0 < t - y < r(t)\} \subset H_{i-1} \cap \{t | 0 < t - \xi < r(t)\}$, we have

(12)
$$F_{H_{i-1}}(y) < \int_{H_{i-1} \cap \{t \mid 0 < t - \xi < r(t)\}} \frac{dt}{r(t)} \le \frac{1}{|q^*|} \int_{q^*} \int_{H_{i-1} \cap \{0 < t - \xi < r(t)\}} \frac{dt}{r(t)} d\xi.$$

Observe that

 $q^* \cap p = \emptyset$ for any $p \in Q_{i-2} \cup \{\text{intervals choisen by step 1 during stage } i-1\}.$

Otherwise, by step 2 q would be covered by some interval chosen on stage $l \leq i - 1$. This contradicts the choice of q. Thus

So by (12) and (a) in the construction we have

$$F_{H_{i-1}}(y) \le \frac{1}{|q^*|} \int_{q^*} \int_{H_{i-1} \cap \{0 \le t - \xi \le r(t)\}} \frac{dt}{r(t)} d\xi \le \frac{1}{|q^*|} \int_{q^*} F_{i-1}(\xi) d\xi < \frac{1}{2}.$$

4. Auxiliary results

The following result is an analogue of the Calderón-Zygmund stopping time procedure. Below l(q) denotes the sidelength of a dyadic cube q.

Claim 2. Let $\Omega \in L^1(S^1)$, and let r(x) be any positive measurable function defined on a set $G \subset \mathbf{R}^2$ of finite measure. Then there exist two systems of sets

$$\{Q_i\}_{i=0}^{\infty}$$
 and $\{E_i\}_{i=0}^{\infty}$,

where Q_i is a system of disjoint dyadic cubes with $l(q) \geq 2^{-i}$, and

$$E_i = \bigcup_{q \in Q_{i-1}} \{ x \in G \cap q : r(x) > l(q) \} \cup \{ x \in G \setminus Q_{i-1} : r(x) > 2^{-i} \}$$

such that the following holds:

$$(13) G \subseteq \cup_{i=0}^{\infty} Q_i,$$

(14)
$$|\cup_{i=0}^{\infty} E_i| \ge \frac{|G|}{50 (\|\Omega\|_{L^1(S^1)} + 1)},$$

for any ancestor \tilde{q} of $q \in Q_i$, and for any neighbor \tilde{q} of any ancestor of $q \in Q_i$, we have

(15)
$$\frac{1}{|\tilde{q}|} \int_{\tilde{q}} S(E_i, \Omega, r)(y) \, dy < \frac{1}{2}.$$

We set

$$Q \equiv \bigcup_{i=0}^{\infty} Q_i, \qquad E \equiv \bigcup_{i=0}^{\infty} E_i \equiv \bigcup_{q \in Q} \{ x \in G \cap q : r(x) > l(q) \}.$$

Proof of Claim 2. The construction of E_i , Q_i repeats the construction of \tilde{D}_i , Q_i in Lemma 2. One has only to replace the condition (a) in the described stopping time procedure by

$$rac{1}{|q|}\int\limits_{q}\,S(E_{i},\Omega,r)(y)dy>rac{1}{2}.$$

The proof of (13), (14) is similar to the proof of (7), (8). Relation (15) follows by reasons which are similar to those presented at the end of Lemma 2 (see the estimate for $F_{H_{i-1}}$).

Claim 3 . Let $\Omega \in L^1(S^1)$ and let $S(E,\Omega,r)(y) > 1/2$. Then $y \in Q$.

Proof of Claim 3. Since $E_i \subset E_{i+1}$, we have $S(E_i, \Omega, r)(y) > 1/2$ for sufficiently large i. By the differentiation of integrals $1/|q^*| \int_{q^*} S(E_i, \Omega, r)(y) dy > 1/2$ for some dyadic cube $q^* \ni y$ with $l(q^*) = 2^{-j}, j \ge i$. Now $E_i \subseteq E_j$ implies $1/|q^*| \int_{q^*} S(E_j, \Omega, r)(y) dy > 1/2$ and (a) gives $q^* \subseteq q \in Q_j$.

The proof of the following claim is based on the fact that $r(x) \simeq l(q)$ near cube q containing y.

Claim 4. Let $\Omega \in L^1(S^1)$ and let $y \in q \in Q_i$ for some $i \geq 0$. Then

(16)
$$S(E \cap B_{10l(q)}(y), \Omega, r)(y) \leq C \|\Omega\|_{L^1(S^1)}.$$

Proof of Claim 4. Remind that

$$E \equiv \bigcup_{q \in Q} \{ x \in G \cap q : r(x) > l(q) \},$$

and

$$S(E \cap B_{10 \, l(q)}(y), \Omega, r)(y) \equiv \int_{E \cap B_{r(x)}(y) \cap B_{10 \, l(q)}(y)} \Omega\left(\frac{x-y}{|x-y|}\right) \, \frac{dx}{r^2(x)}.$$

Now $x \in E \cap B_{r(x)}(y)$ implies $r(x) \ge l(q)/2$. Indeed, this is obvious if $|x-y| \ge l(q)/2$, since r(x) > |x-y|. If |x-y| < l(q)/2, then either $x \in q$ or x belongs to the neighbor \tilde{q} of q with $l(\tilde{q}) \ge l(q)/2$ (use Step 2). But $x \in E$, so $r(x) \ge l(\tilde{q})$. This gives

$$S(E \cap B_{10l(q)}(y), \Omega, r)(y) \leq \left(\frac{l(q)}{2}\right)^{-2} \int_{B_{10l(q)}(y)} \Omega\left(\frac{x-y}{|x-y|}\right) dx = C \|\Omega\|_{L^{1}(S^{1})}.$$

5. Estimates on the exceptional set

In this section all proofs strongly depend on the geometric properties of g announced in the Theorem.

The following claim is based on Claim 1 and Claim 2. Let D be any set of finite measure. We apply Claim 1 to get \tilde{D} . Now, by Claim 2 we get E from \tilde{D} (take $G = \tilde{D}$).

Claim 5. Let $y \in q \in Q_i$ for some i and let

(17)
$$P = \{x \in E : y_2 \le x_2 \le y_2 + 2l(q), x_1 \ge y_1 + 2l(q)\}.$$

Suppose also that $g \in L^1([0,1])$ and $\theta g(\theta)$ is an increasing function. Then

(18)
$$S(P, \Omega, r)(y) \le c \|g\|_{L^1([0,1])}.$$

Proof of Claim 5. Observe that $x \in P \cap B_{r(x)}(y)$ implies

$$2l(q) \le x_1 - y_1 \le |x - y| < r(x).$$

This, together with the fact that $\theta g(\theta)$ is increasing gives

(19)
$$\frac{1}{r(x)}g\left(\frac{x_2 - y_2}{x_1 - y_1}\right) \le \frac{1}{2l(q)}g\left(\frac{x_2 - y_2}{2l(q)}\right).$$

By (19) we have

$$S(P,\Omega,r)(y) \equiv \int\limits_{P \cap B_{r(x)}(y)} g\left(\frac{x_2 - y_2}{x_1 - y_1}\right) \frac{dx}{r^2(x)} \leq \frac{1}{2 \, l(q)} \int\limits_{P \cap B_{r(x)}(y)} g\left(\frac{x_2 - y_2}{2 \, l(q)}\right) \, \frac{dx}{r(x)}.$$

Now we apply the Fubini Theorem to the right-hand side of the above inequality and observe that it does not exceed

$$\frac{1}{2 l(q)} \int_{y_2}^{y_2+2 l(q)} g\left(\frac{x_2-y_2}{2 l(q)}\right) dx_2 \int_{\{x_1>y_1+2 l(q): x \in P \cap B_{r(x)}(y)\}} \frac{dx_1}{r(x_1,x_2)}.$$

Since $P \subset E \subset \widetilde{D}$, the inner integral is bounded by Claim 1. It remains to make a substitution $x_2 - y_2 = 2 l(q) \theta$ in the outer integral to get

$$S(P,\Omega,r)(y) \le \frac{c}{2 l(q)} \int_{y_2}^{y_2+2 l(q)} g\left(\frac{x_2-y_2}{2 l(q)}\right) dx_2 = c \int_0^1 g(\theta) d\theta.$$

The following statement is an analogue of (10).

Claim 6. Let $y \in q \in Q_i$ for some i and let $g \in L^1([0,1])$ be decreasing. Then

(20)
$$S(H, \Omega, r)(y) \le C \|g\|_{L^1([0,1])},$$

where $H = E \setminus (P \cup B_{10l(q)}(y))$.

Proof of Claim 6. Let $H_{i-1} = H \cap E_{i-1}$. We show

- $\aleph: S(H \setminus H_{i-1}, \Omega, r)(y) \leq C \|g\|_{L^1([0,1])}.$
- $\supset: S(H_{i-1}, \Omega, r)(y) \leq C \|g\|_{L^1([0,1])}.$
- \aleph . By the definition of E_{i-1} , we may assume that $r(x) \leq 2^{-i+1} = 2 l(q)$. On the other hand, by the reasons which are similar to those in the proof of Claim 4, we have $l(q) \leq r(x)$. This gives \aleph .
 - □. We claim that

(21)
$$S(H_{i-1}, \Omega, r)(y) \le c \frac{1}{|q^*|} \int_{q^*} S(H_{i-1}, \Omega, r)(\xi) d\xi,$$

where q^* has the same center as q, and $l(q^*) = 3l(q)$.

The above relation reads as follows:

$$\int_{H_{i-1} \cap B_{r(x)}(y)} g\left(\frac{x_2 - y_2}{x_1 - y_1}\right) \frac{dx}{r^2(x)} \le c \frac{1}{|q^*|} \int_{q^*} d\xi \int_{H_{i-1} \cap B_{r(x)}(\xi)} g\left(\frac{x_2 - \xi_2}{x_1 - \xi_1}\right) \frac{dx}{r^2(x)}.$$

By Fubini Theorem,

$$\int_{H_{i-1} \cap B_{r(x)}(y)} g\left(\frac{x_2 - y_2}{x_1 - y_1}\right) \frac{dx}{r^2(x)} \le c \int_{H_{i-1}} \frac{dx}{r^2(x)} \qquad \frac{1}{|q^*|} \int_{q^* \cap B_{r(x)}(x)} g\left(\frac{x_2 - \xi_2}{x_1 - \xi_1}\right) d\xi.$$

Thus, to show (21) it is enough to prove that for every $x \in H_{i-1} \cap B_{r(x)}(y)$, we have

(22)
$$g\left(\frac{x_2 - y_2}{x_1 - y_1}\right) \le c \frac{1}{|q^*|} \int_{q^* \cap B_{r(x)}(x)} g\left(\frac{x_2 - \xi_2}{x_1 - \xi_1}\right) d\xi.$$

In fact, it is enough to prove the last inequality with K instead of q^* , where $K \subset q^*$: $|K| \ge c |q^*|$.

Fix any $x \in H_{i-1} \cap B_{r(x)}(y)$. Define $K(x) \equiv \{\xi \in q^*, \text{ lying above the line } l_{xy}\}$. Since $g(\theta)$ is decreasing observe that

$$g\left(\frac{x_2 - y_2}{x_1 - y_1}\right) \le g\left(\frac{x_2 - \xi_2}{x_1 - \xi_1}\right) \qquad \forall \xi \in K(x).$$

Now let $K \equiv \bigcap_{x \in H_{i-1} \cap B_{r(x)}(y)} K(x)$. By elementary geometry $|K| \geq c |q^*|$. This gives (22). Thus we proved (21).

It remains to show that the mean in the right-hand side of (21) is finite. Let N(q) denote the set of dyadic neighbors of q of the sidelength l(q). Then observe that

$$q^* \subset M \equiv N(\text{father of } q) \cup \text{father of } q.$$

Hence there is a cube $\tilde{q} \in M$ such that

(23)
$$\frac{1}{|q^*|} \int_{q^*} S(H_{i-1}, \Omega, r)(\xi) d\xi \le c \frac{1}{|\tilde{q}|} \int_{\tilde{q}} S(H_{i-1}, \Omega, r)(\xi) d\xi.$$

We claim that the mean in the right-hand side of (23) is bounded by 1/2. Indeed, observe that

 $\tilde{q} \cap p = \emptyset$ $\forall p \in Q_{i-2} \cup \{\text{intervals choisen by step 1 during stage } i-1\}.$

Otherwise, by step 2 q would be covered by some cube chosen on stage $l \leq i - 1$, which contradicts the choice of q. This means that

$$\frac{1}{|\tilde{q}|} \int_{\tilde{q}} S(H_{i-1}, \Omega, r)(\xi) d\xi \leq \frac{1}{|\tilde{q}|} \int_{\tilde{q}} S(E_{i-1}, \Omega, r)(\xi) d\xi < \frac{1}{2}$$

by (a). The proof of \square is finished.

6. Proof of the Theorem

By Claim 3 it is enough to consider $y \in Q_i$ for some $i \geq 0$. We have

$$S(E,\Omega,r)(y) = S(E \cap B_{10l(q)}(y),\Omega,r)(y) + S(P,\Omega,r)(y) + S(H,\Omega,r)(y)$$

where P and H are as above. Now claims 4,5, and 6 complete the proof.

Acknowledgment. We would like to thank Alex Iosevich, Mark Rudelson, and Artem Zvavitch for helpful discussions.

References

- [1] Steven Hudson, A covering lemma for maximal operators with unbounded kernels, Michgan Math. J., 34 (1987), 147-151.
- [2] Michael Christ, Weak type (1,1) bounds for rough operators, Annals of Math., 128 (1988), 19-42.
- [3] Michael Christ, J.-L. Rubio de Francia, Weak type (1,1) bounds for rough operators II, Invent. Math., 93 (1988), 225-237.
- [4] Andreas Seeger, Singular integral operators with rough kernels, J. of AMS, 9 (1996), 95-105.

Georgiy Arutyunyants, Dep. of Mathematics, University of Missouri, Columbia, MO $65211,\,\mathrm{USA}$

 $E ext{-}mail\ address:$ arutyung@math.missouri.edu

DMITRY RYABOGIN, DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MISSOURI, COLUMBIA, MO 65211, USA

 $E ext{-}mail\ address: ryabs@math.missouri.edu}$