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Abstract

Let f and g be two continuous functions on the unit sphere Sn−1 in Rn , n ≥ 3, and let their restrictions
to any one-dimensional great circle E coincide after some rotation φE of this circle: f (φE (θ)) = g(θ)∀θ ∈

E . We prove that in this case f (θ) = g(θ) or f (θ) = g(−θ) for all θ ∈ Sn−1. This answers the question
posed by Richard Gardner and Vladimir Golubyatnikov.
Published by Elsevier Inc.
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1. Introduction

The main result of this paper is the following.

Theorem 1. Let f and g be two continuous functions on the unit sphere Sn−1 in Rn, n ≥ 3,
and let their restrictions to any one-dimensional great circle E coincide after some rotation
φE ∈ SO(2) of this circle: f (φE (θ)) = g(θ)∀θ ∈ E. Then, f (θ) = g(θ) or f (θ) = g(−θ) for
all θ ∈ Sn−1.

Theorem 1 gives an answer to the so-called “continual Rubik’s cube puzzle”, formulated by
Richard Gardner and Vladimir Golubyatnikov; see [5, pp. 1,2], and [4].

There are many questions and results about whether the congruency of sections or projections
of convex bodies implies the congruency of bodies in the ambient space; see, for example
[2, Chapters 3, 7], and [5, Chapters 1–3]. Using Theorem 1 one can easily obtain some results of
this type. We have the following.
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Theorem 2. Let n ≥ 3 and let K and L be two convex bodies in Rn containing the origin in
their interior. Then K = L or K = −L, provided the projections K |H, L|H onto any two-
dimensional subspace H of Rn are rotations of each other around the origin.

Theorem 3. Let K and L be two star-shaped bodies with respect to the origin in Rn, n ≥ 3.
Then K = L or K = −L, provided the sections K ∩ H, L ∩ H by any two-dimensional subspace
H of Rn are rotations of each other around the origin.

Theorems 2 and 3 shed more light on the subject related to the following open problems
(see [2, Problem 3.2, p. 125 and Problem 7.3, p. 289]).

Problem 1. Let 2 ≤ k ≤ n − 1 and let K and L be two convex bodies in Rn such that K |H is
congruent to L|H for all H ∈ G(n, k). Is K a translate of ±L?

Problem 2. Let 2 ≤ k ≤ n − 1 and let K and L be two star bodies in Rn such that K ∩ H is
congruent to L ∩ H for all H ∈ G(n, k). Is K a translate of ±L?

Here “K |H is congruent to L|H” means that there exists an orthogonal transformation φ ∈ O(k)
such that φ(K |H) is a translate of L|H,G(n, k) stands for the Grassmann manifold of k-
dimensional subspaces of Rn .

If the corresponding projections are translates of each other, or if the bodies are convex and the
corresponding sections are translates of each other, the answers to Problems 1 and 2 are known to
be affirmative; see [2, Theorems 3.1.3 and 7.1.1]. Thus, one possible way to give the answers to
Problems 1 and 2, at least in the case of the direct congruence of the two-dimensional projections
(or sections), is to show that there exist the translations of K and L such that the corresponding
projections (or sections) of the translated bodies are rotations of each other around the origin.

Theorems 2 and 3 in the convex case were proved by Benjamin Mackey [10] who used
the ideas of Vladimir Golubyatnikov, [3,4]. In this case both theorems follow from each other
by duality. In connection with Theorem 3, we would also like to mention the result of Rolf
Schneider [12], who proved that if K is a convex body in Rn and p is a point of K such that all
intersections of K with hyperplanes through p are congruent, then K is a Euclidean ball.

In this paper we consider only the case n ≥ 3, the information about the analogues of
Theorems 1–3 in the case n = 2 is contained in the last section. To prove Theorem 1 we use
the techniques from Harmonic Analysis and some simple spherical Topology.

The paper is organized as follows. Since the proof of Theorem 1 is quite long and requires
many auxiliary statements, in order for the reader to be able to easily follow the logic of the proof,
in the next section we formulate the main auxiliary results, Lemmata 1–3; then we prove Theo-
rems 1–3. In Section 3 we prove Lemmata 3 and 1. In Section 4 we prove several auxiliary results
used in the proof of Lemma 2. Lemma 2 is proved in Section 5. (It is similar to Lemma 2.1.4
from [5, p. 17]. We formulate and prove the result for arbitrary positive continuous functions on
the unit sphere, Lemma 2.1.4 was formulated in terms of the support functions of convex bodies.
Since some details are omitted in [5], we include the proof for the convenience of the reader). In
the last section we make some concluding remarks. The proof of technical Lemma 10 is given in
the Appendix.
Notation. For n ≥ 2 we denote by Sn−1 the unit sphere in Rn , and by Bt (x) the Euclidean
n-dimensional ball of radius t > 0 centered at x ∈ Rn . The notation ξ⊥

= {θ ∈ Sn−1
:

θ · ξ = 0}, ξ ∈ Sn−1, is used for the great (n − 2)-dimensional sub-sphere of Sn−1. The notation
O(k) and SO(k), 2 ≤ k ≤ n, for the subgroups of the orthogonal group O(n) and the special
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orthogonal group SO(n) in Rn is standard. For a two-dimensional subspace E of Rn we will
write φE ∈ SO(2) meaning that there exists a proper choice of an orthonormal basis in Rn and
a rotation Φ ∈ SO(n), with a matrix written in this basis, such that the action of Φ on E is the
rotation φE in E , and the action of Φ on E⊥ is trivial, i.e., Φ(y) = y∀y ∈ E⊥; here E⊥ stands
for the orthogonal complement of E . We set

Ξ0 = {ξ ∈ Sn−1
: f (θ) = g(θ) ∀θ ∈ ξ⊥

}, (1)

Ξπ = {ξ ∈ Sn−1
: f (θ) = g(−θ) ∀θ ∈ ξ⊥

}, (2)

where f and g are any functions on Sn−1. Given a function f on Sn−1 we let

fe(θ) =
f (θ)+ f (−θ)

2
, ∀θ ∈ Sn−1,

stand for its even part.

2. Proofs of Theorems 1–3

The following results will be used in the proof of Theorem 1. Their proofs are given in the
subsequent sections.

Lemma 1. Let n ≥ 3 and let Sn−1
= Ξ0 ∪ Ξπ , where f and g are continuous. Then f (θ) =

g(θ)∀θ ∈ Sn−1 or f (θ) = g(−θ)∀θ ∈ Sn−1.

Lemma 2. Let n = 3 and let f and g be two positive continuous functions satisfying the condi-
tions of Theorem 1. Then,

S2
= Ξ0 ∪ Ξπ ∪ Σ , (3)

where Σ is the set of all directions ξ ∈ S2 such that

fe(θ) = ge(θ) = const, ∀θ ∈ ξ⊥. (4)

Observe that the constant is independent of ξ ∈ Σ , since any two great sub-spheres of S2

intersect.

Lemma 3. Let n = 3 and let f, g and Σ be as in Lemma 2. Then,

Σ ⊆ (Ξ0 ∪ Ξπ ). (5)

The idea of the proof of Theorem 1 is that the restrictions of f and g onto big circles “do
not rotate”. If they do, due to the fact that f 2, g2 satisfy the conditions of Theorem 1 as long
as f and g do, using Lemma 2, one can reduce everything to two equations with two unknown
variables, cf. (6).

Proof of Theorem 1. Let n = 3. We observe that by adding a constant we can assume that f
and g are both positive. By Lemmata 2 and 3 we have S2

= Ξ0 ∪ Ξπ . Hence, the result follows
from Lemma 1.

Let n = 4, and let E be any two-dimensional sub-sphere of S3. Consider all one-dimensional
sub-circles of E . Since E ⊂ S3, they are also one-dimensional sub-circles of S3, hence, we see
that the conditions of Theorem 1 are satisfied for E = S2 and n = 3. Applying our result in the
case n = 3, we conclude that f (θ) = g(θ) or f (θ) = g(−θ)∀θ ∈ E . Since the chosen E was
arbitrary, we can apply Lemma 1 for n = 4 to see that Theorem 1 holds in this case.
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Finally, assume by induction that for all ξ ∈ Sn−1, the result holds for the restrictions f |ξ⊥ ,

g|ξ⊥ of f and g onto any (n − 2)-dimensional sub-spheres ξ⊥ of Sn−1, i.e.,

f |ξ⊥(θ) = g|ξ⊥(θ) ∀θ ∈ ξ⊥, or f |ξ⊥(θ) = g|ξ⊥(−θ) ∀θ ∈ ξ⊥.

Then, we again apply Lemma 1, and the result follows. �
Proof of Theorem 2. Let x ∈ Rn and let hK (x) = max{x · y : y ∈ K } be the support function
of the compact convex set K ⊂ Rn , (see [2, p. 16]).

We are given that for every two-dimensional subspace H there exists ψ = ψH ∈ SO(2) such
that the projections of the bodies K and L onto H satisfy ψ(K |H) = L|H . Hence, hψ(K |H)(x)
= hL|H (x) for all x ∈ H . Since the support function is homogeneous of degree 1, we have
hψ(K |H)(θ) = hL|H (θ) for all θ ∈ H ∩ Sn−1. By the well-known properties of the support
function,

hK |H (θ) = hK (θ), hψ(K |H)(θ) = hK |H (ψ
t (θ)), ∀θ ∈ H ∩ Sn−1,

(see, for example, (0.21), (0.26), [2, pp. 17,18]), we obtain

hK (φ(θ)) = hL(θ) ∀θ ∈ H ∩ Sn−1,

where φ = ψ t . It remains to apply Theorem 1 with f = hK , g = hL to conclude that
hK (θ) = hL(θ) or hK (θ) = hL(−θ) for all θ ∈ Sn−1. In the first case, K = L , and in the
second, K = −L . �
Proof of Theorem 3. Let x ∈ Rn

\ {0}, let K ⊂ Rn be a star-shaped set, and let ρK (x) =

max{c : cx ∈ K } be its radial function, where the line through x and the origin is assumed to
meet K , (see [2, p. 18]).

We are given that for every two-dimensional subspace H there exists ψ = ψH ∈ SO(2) such
that the sections of the bodies K and L satisfy ψ(K ∩ H) = L ∩ H . Hence, ρψ(K∩H)(x) =

ρL∩H (x) for all x ∈ H . Since the radial function is homogeneous of degree −1, we have
ρψ(K∩H)(θ) = ρL∩H (θ) for all θ ∈ H ∩ Sn−1. By the well-known properties of the radial
function,

ρK∩H (θ) = ρK (θ), ρψ(K∩H)(θ) = ρK∩H (ψ
−1(θ)), ∀θ ∈ H ∩ Sn−1,

(see, for example, (0.33), [2, p. 20]), we obtain

ρK (φ(θ)) = ρL(θ) ∀θ ∈ H ∩ Sn−1,

where φ = ψ−1. It remains to apply Theorem 1 with f = ρK , g = ρL to conclude that ρK (θ) =

ρL(θ) or ρK (θ) = ρL(−θ) for all θ ∈ Sn−1. In the first case, K = L , and in the second,
K = −L . �

3. Proofs of Lemmata 3 and 1

To prove Lemma 3 we will need the following well-known result. We will apply it in a way
that is very similar to the one in [12].

Lemma 4. Let n = 3 and let f be a positive continuous function on S2. If there exist two
constants c1, c2 such that for some ξ ∈ S2,

f (θ)+ f (−θ) = 2c1 and f 2(θ)+ f 2(−θ) = 2c2 ∀θ ∈ ξ⊥, (6)

then f (θ) = c1 for every θ ∈ ξ⊥.
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Proof. Since f (θ) + f (−θ) = 2c1 for all θ ∈ ξ⊥, there exists θ0 ∈ ξ⊥ such that f (θ0) =

f (−θ0).
Indeed, we can assume that f is not identically constant and consider the function g(θ) :=

f (−θ) − f (θ) = 2c1 − 2 f (θ) for all θ ∈ ξ⊥. By the intermediate value theorem, it is enough
to show that there exist θ1, θ2 ∈ ξ⊥ such that g(θ1) > 0 and g(θ2) < 0, (or g(θ1) < 0 and
g(θ2) > 0). If g(θ) > 0 for all θ ∈ ξ⊥, then f (θ) < c1 for all θ ∈ ξ⊥. But then, f (θ)+ f (−θ) <
2c1, a contradiction. Similarly, if g(θ) < 0∀θ ∈ ξ⊥, then f (θ)+ f (−θ) > 2c1, a contradiction.
Thus, g must change the sign, and ∃θ0 such that g(θ0) = 0.

Now we take this θ0 and substitute it into the first relation in (6) to obtain c1 = f (θ0). Using
the second relation in (6), we also see that c2 = f 2(θ0) = c2

1.
Fix any θ ∈ ξ⊥. Then, (6) can be rewritten as

x + y = 2c1, x2
+ y2

= 2c2
1,

where x = f (θ) > 0, and y = f (−θ) > 0. Since the system has a unique solution x = y = c1
and θ ∈ ξ⊥ was arbitrary, the result follows. �

Proof of Lemma 3. We observe that if two positive functions f and g satisfy the conditions of
Theorem 1, then f 2 and g2 satisfy the same conditions as well. Hence, we may apply Lemma 2
to f 2 and g2 instead of f and g, and we can assume that the corresponding sets Ξ0,Ξπ ,Σ \

(Ξ0 ∪Ξπ ), are the same for f, g and f 2, g2. In fact, for positive functions f = g is equivalent to
f 2

= g2, and it is clear that the corresponding sets Ξ0,Ξπ , defined for f, g and f 2, g2, coincide.
Since, by Lemma 2, we have S2

\ (Ξ0 ∪ Ξπ ) = Σ \ (Ξ0 ∪ Ξπ ), we see that the corresponding
sets Σ \ (Ξ0 ∪ Ξπ ) coincide as well.

We claim that Σ \ (Ξ0 ∪ Ξπ ) = ∅. Indeed, if Σ \ (Ξ0 ∪ Ξπ ) were not empty, then for any
ξ ∈ (Σ \ (Ξ0 ∪ Ξπ )), we would have (4) and the analogue of (4) for f 2, g2 instead of f, g.
In other words, we would have (6) and the analogue of (6) for g instead of f . Then, applying
Lemma 4, we would obtain f (θ) = c1 (and g(θ) = c1) for all θ ∈ ξ⊥. Hence, f and g are con-
stant functions on ξ⊥, and we would get ξ ∈ (Ξ0∪Ξπ ), a contradiction. Thus, Σ \(Ξ0∪Ξπ ) = ∅
and (5) follows from (3). �

To prove Lemma 1 we will use the following.

Lemma 5. Let n ≥ 3 and let f and g be two continuous functions on Sn−1. Then, the sets Ξ0
and Ξπ are closed.

Proof. We prove that Ξ0 is closed. The proof for Ξπ is similar.
We can assume that Ξ0 is non-empty. Let (ξm)

∞

m=1 be a sequence of elements of Ξ0 converging
to ξ ∈ Sn−1, and let θ be any point on ξ⊥.

It is readily seen that there exists a sequence (θl)
∞

l=1, θl ∈ ξ⊥

l , converging to θ as l → ∞.
Indeed, let B 1

l
(θ) be a Euclidean ball centered at θ of radius 1

l , where l ∈ N. Since ξ⊥
m → ξ⊥ as

m → ∞, for each l ∈ N there exists m = m(l) such that

ξ⊥
m ∩ (B 1

l
(θ) ∩ Sn−1) ≠ ∅.

Choose any θl = θm(l) ∈ ξ⊥

m(l) ∩ B 1
l
(θ). Then θl → θ as l → ∞.

Finally, if (θl)
∞

l=1, θl ∈ ξ⊥

l , is any sequence of points converging to θ as l → ∞, then
f (θl) = g(θl) for all l = 1, 2, . . ., yields f (θ) = g(θ). Hence, ξ ∈ Ξ0. �
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Before we start proving Lemma 1, we observe that for any ξ0 ∈ Sn−1, we have

Sn−1
=


ξ∈ξ⊥

0

ξ⊥. (7)

Indeed, in the case ξ0 being the north pole, ξ0 = (0, . . . , 0, 1), (7) can be checked directly, using
the definition of the inner product in Rn . In the general case, (7) is a consequence of the result
for the north pole and the transitivity of the action of the group of rotation on the manifold {ξ⊥

}

of all great sub-spheres of Sn−1.

Proof of Lemma 1. We can assume that the sets Ξ0,Ξπ are not empty. We can also assume that
Ξ0 ∩ Ξπ ≠ ∅. Indeed, let ξ be a point on the boundary of Ξ0, (ξ ∈ Ξ0, since Ξ0 is closed). Then
∀l ∈ N the set B 1

l
(ξ) ∩ Sn−1 contains a point ξl from Ξπ . But then ξl → ξ as l → ∞, hence

ξ ∈ Ξπ , and ξ ∈ Ξ0 ∩ Ξπ .
We shall consider two cases.

(1) There exists ξ0 ∈ Sn−1 such that (Ξ0 ∩ Ξπ ) ∩ ξ⊥

0 = ∅.
(2) For every ξ ∈ Sn−1 we have (Ξ0 ∩ Ξπ ) ∩ ξ⊥

≠ ∅.

In the first case we use Sn−1
= Ξ0 ∪ Ξπ to write

Sn−1
= (Ξ0 \ Ξπ ) ∪ (Ξ0 ∩ Ξπ ) ∪ (Ξπ \ Ξ0), (8)

in order to conclude that

ξ⊥

0 ⊂ (Ξ0 \ Ξπ ) ∪ (Ξπ \ Ξ0). (9)

Since

(Ξ0 \ Ξπ ) ∩ (Ξπ \ Ξ0) = ∅, (10)

relation (9) yields

ξ⊥

0 ⊂ (Ξ0 \ Ξπ ) or ξ⊥

0 ⊂ (Ξπ \ Ξ0), (11)

(we refer the reader to the end of the proof, where we show the validity of (11)). Thus, using (7)
and (11) we obtain f (θ) = g(θ) or f (θ) = g(−θ)∀θ ∈ Sn−1.

Consider the second case. We claim that

Sn−1
=


ξ∈(Ξ0∩Ξπ )

ξ⊥, (12)

(hence, f and g are even and we are done). If (12) is not true, then there exists w ∈ Sn−1
\

ξ∈(Ξ0∩Ξπ )
ξ⊥. But then, w⊥

∩ (Ξ0 ∩Ξπ ) = ∅, (for, if some θ ∈ w⊥
∩ (Ξ0 ∩Ξπ ) then w ∈ θ⊥

yields w ∈

ξ∈(Ξ0∩Ξπ )

ξ⊥) a contradiction.
It remains to show (11). If it is not true, then

ξ⊥

0 ∩ (Ξ0 \ Ξπ ) ≠ ∅, and ξ⊥

0 ∩ (Ξπ \ Ξ0) ≠ ∅.

Take any w1 ∈ ξ⊥

0 ∩ (Ξ0 \ Ξπ ) and w2 ∈ ξ⊥

0 ∩ (Ξπ \ Ξ0) and consider a big circle E ⊂ ξ⊥

0
containing w1 and w2. Rotating if necessary we can assume that

E = {w = w(t) ∈ Sn−1
: w(t) = (cos t, sin t, 0, . . . , 0), t ∈ [0, 2π ]},

and

w1 = (cos t1, sin t2, 0, . . . , 0), w2 = (cos t2, sin t2, 0, . . . , 0),
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for some t1, t2 ∈ [0, 2π ], t1 < t2. Now put

t∗ = sup{t ∈ [t1, t2) : w(t) ∈ ξ⊥

0 ∩ (Ξ0 \ Ξπ )}, w∗
= w(t∗).

We have two possibilities,

(a) w∗
∈ ξ⊥

0 ∩ (Ξ0 \ Ξπ ), (b) w∗
∈ ξ⊥

0 ∩ (Ξπ \ Ξ0).

If (a) is true, then w∗
∈ ξ⊥

0 ∩ (Ξπ \ Ξ0) since w(t) ∈ ξ⊥

0 ∩ (Ξπ \ Ξ0) for all t > t∗, and ξ⊥

0 ∩ Ξπ
is closed. But then,

w∗
∈ (Ξ0 \ Ξπ ) ∩ (Ξπ \ Ξ0), (13)

which contradicts (10).
If (b) is true, then ∀l ∈ N∃tl ∈ [t∗ −

1
l , t∗) such that wl = w(tl) ∈ ξ⊥

0 ∩ (Ξ0 \Ξπ ), (otherwise
∃l such that ∀t ∈ [t∗ −

1
l , t∗] we have w(t) ∉ ξ⊥

0 ∩ (Ξ0 \ Ξπ ), and t∗ is not a supremum). Since
wl → w∗ as l → ∞ and ξ⊥

0 ∩ Ξ0 is closed, we again have (13) which contradicts (10), and (11)
is proved.

The proof of the lemma is finished. �

4. Auxiliary results used in the proof of Lemma 2

Lemma 6. Let n = 3 and let f and g be two positive continuous functions on S2. Then Σ ,
defined as in Lemma 2, is closed.

Proof. We can assume that Σ is not empty. We recall that the constant is independent of ξ ∈ Σ ,
since any two great sub-spheres of S2 intersect.

Let (ξl)∞l=1 be a sequence of elements of non-empty Σ converging to ξ ∈ S2, as l → ∞, and
let θ be any point on ξ⊥. If (θl)

∞

l=1, θl ∈ ξ⊥

l , is a sequence of points converging to θ as l → ∞,
(the existence of such a sequence can be shown exactly as in the proof of Lemma 5), then (4)
holds with θl instead of θ and ξ⊥

l instead of ξ⊥ for all l = 1, 2, . . .. By continuity, ξ ∈ Σ . �
To formulate the next lemma we introduce some notation.
For a fixed right-hand rule orientation in R3 and a fixed direction ξ ∈ S2 we let {φξ } stand

for the set of all counter-clockwise rotations φξ ∈ SO(2) in ξ⊥ such that

f (φξ (θ)) = g(θ) ∀θ ∈ ξ⊥. (14)

We will write απ ∈ {φξ }, α ∈ R, meaning that the matrix of the rotation corresponding to the
angle απ belongs to {φξ }. We denote

Fα := {ξ ∈ S2
: απ ∈ {φξ }}, α ∈ R, (15)

(in the three-dimensional case, F0 = Ξ0,F1 = Ξπ , cf. (1) and (2)).

Lemma 7. Let n = 3 and let α ∈ R. Then, Fα is closed.

Proof. We can assume that Fα is not empty.
Let (ξl)∞l=1 be a sequence of elements of Fα converging to ξ ∈ S2, as l → ∞, and let θ be

any point on ξ⊥. Consider a sequence (θl)
∞

l=1 of points θl ∈ ξ⊥

l converging to θ as l → ∞,
(the existence of such a sequence can be shown exactly as in the proof of Lemma 5). By the
definition of Fα , we see that

f (φξl (θl)) = g(θl) θl ∈ ξ⊥

l , l ∈ N. (16)
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Moreover, by Rodrigues’ rotation formula, [7], we have

Φl(θl) = θl cos(απ)+ (ξl × θl) sin(απ)+ ξl(ξl · θl)(1 − cos(απ)), (17)

where Φl = Φl,α ∈ SO(3) is a rotation around ξl by an angle απ , and ξl × θl , ξl · θl(=0), are
usual vector and scalar products in R3. Since the restriction of Φl onto ξ⊥

l coincides with the
rotation in ξ⊥

l by απ , we see that (16) yields

f (Φl(θl)) = g(θl) ∀l ∈ N. (18)

Let Φ ∈ SO(3) be a rotation around ξ by an angle απ . Passing to the limit in (17), and using
the Rodrigues’ formula again, we obtain

lim
l→∞

Φl(θl) = Φ(θ). (19)

Hence, using the continuity of f and g and (19) we may pass to the limit in (18) to obtain
f (Φ(θ)) = g(θ). Finally, due to the facts that the restriction of Φ onto ξ⊥ coincides with the
rotation by απ in ξ⊥, and the choice of θ ∈ ξ⊥ was arbitrary, we obtain (14) with {φξ } ∋ απ .
Thus, ξ ∈ Fα , and the result follows. �

The following lemma is a well-known consequence of the Baire category theorem, we include
it here for the convenience of the reader.

We recall that a set A is called nowhere dense in a topological space Y , if the closure of A has
an empty interior, [11, p. 42]. The Baire category theorem claims that no complete metric space
can be written as a countable union of nowhere dense sets; see [11, p. 43].

Lemma 8. Let Bβ(θ) ⊂ S2 be the spherical geodesic closed ball centered at θ ∈ S2 of radius
βπ, β > 0, and let Bβ(θ) =


∞

k=1 Fk , where all Fk are closed. Then, there exists ko ∈ N such
that int(Fko) ≠ ∅.

Proof. It is enough to observe that Bβ(θ) is a complete metric space, since it is a compact subset
of the complete metric space S2 with the usual metric of S2. Since Fk are all closed, the result
follows from the Baire category theorem. �

The next result is a consequence of the properties of the Funk transform, [6, Chapter III,
Section 1],

R f (ξ) =


ξ⊥

f (θ)dθ, ξ ∈ Sn−1.

Here dθ is the Lebesgue measure on ξ⊥.

Lemma 9. Let n = 3 and let f and g be as in Theorem 1. Then,

fe(θ) = ge(θ) ∀θ ∈ S2. (20)

Proof. Let ξ ∈ S2, and let φξ be the corresponding rotation in ξ⊥. By the rotation invariance of
the Lebesgue measure on ξ⊥, we have

ξ⊥

f (φξ (θ))dθ =


ξ⊥

f (θ)dθ.

Hence,

R f (ξ) = Rg(ξ), ∀ξ ∈ S2,



Author's personal copy

D. Ryabogin / Advances in Mathematics 231 (2012) 3429–3444 3437

and we obtain (20), (to see the validity of the last statement, apply Theorem C.2.4 from [2, p. 430]
to fe − ge). �

To formulate the last auxiliary statement we introduce some more notation.
Let α ∈ (0, 1) and let S1,S2 be any two spherical circles in the standard metric of S2, both

of radius απ . The union l ∪ m of two open arcs l ⊂ S1 and m ⊂ S2 will be called a spherical
X -figure if the angle between arcs is in (0, π4 ), the length of the arcs is less than απ , and the arcs
intersect at their centers only, l∩m = {w}. The point w will be called the center of the X -figure.
The ends of the arcs of the X -figure will be called the vertices of X .

Let f be a function on S2, and let w be a center of a spherical X -figure. If for every u ∈ X
we have f (u) = f (w), we will write ∃X f (w) ⊂ S2.

Lemma 10. Let n = 3 and let f and g be two continuous functions satisfying the conditions
of Theorem 1. Assume also that Fα , defined by (15) for some α ∈ (0, 1), satisfies int(Fα) ≠ ∅.
If ξ ∈ int(Fα), then

∀w ∈ ξ⊥
∃ X fe(w) ⊂ S2, (21)

and one of the arcs of X fe(w) is orthogonal to ξ⊥. Moreover,

∀w, θ ∈ ξ⊥
∃X fe(w), X fe(θ) ∈ S2

: Θ(X fe(w)) = X fe(θ), (22)

where Θ ∈ SO(3) is such that Θ(ξ) = ξ and Θ(w) = θ .

The proof of this lemma is technical and we give it in the Appendix.

5. Proof of Lemma 2

The proof will be split into two lemmata proved below. We start with a few comments.
By Lemma 1 we can assume Σ ≠ ∅. If F := S2

\ (Ξ0 ∪ Ξπ ∪ Σ ) ≠ ∅, we consider two
cases:

(1) ∃ ξ ∈ F : {φξ } ∋ απ, α ∈ R \ Q; (23)

(2) F =


r∈Q

Fr , Fr := F ∩ Fr , (24)

where Fr is defined as in (15) with r instead of α, and Q is the set of rational numbers r such
that r =

p
q for co-prime integers p and q ≠ 0.

To prove Lemma 2 it is enough to show that both (23) and (24) are not possible.

Lemma 11. Let n = 3, and let f, g,Σ , F be as above. Then (23) is not possible.

Proof. Let φα stand for the rotation in ξ⊥ through the angle απ . Relations (20) and (14) give

fe(φα(θ)) = ge(θ) = fe(θ) ∀θ ∈ ξ⊥.

Hence, we have

fe(φ2α(θ)) = ge(φα(θ)) = ge(θ) = fe(θ) ∀θ ∈ ξ⊥.

After iteration we obtain

fe(φmα(θ)) = fe(θ) ∀m ∈ N ∀θ ∈ ξ⊥.
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If for some ξ ∈ F the set {φξ } contains the angle απ for an irrational α, then the points
φmα(θ),m ∈ N, form a dense set on ξ⊥, [8]. By continuity, fe(θ) = const for all θ ∈ ξ⊥,
which contradicts the fact that ξ ∉ Σ . �

Lemma 12. Let n = 3, and let f, g,Σ , F be as above. Then (24) is not possible.

Proof. We claim at first that

∃ ro ∈ Q : int(Fro) ≠ ∅, (25)

where Q is as in (24).
Indeed, assume that for all r ∈ Q we have int(Fr ) = ∅. By Lemmata 5 and 6, the set F is

open as a compliment of the union of three closed sets. Hence, there exist β > 0 sufficiently
small and θ ∈ F such that the spherical geodesic closed ball Bβ(θ) (centered at θ of radius βπ )
is contained in F . Moreover, using (24) we can write

Bβ(θ) =


r∈Q

(Bβ(θ) ∩ Fr ), ∀r ∈ Q, (26)

where Bβ(θ) ∩ Fr are all closed (apply Lemma 7 with α = r ). Now our assumption together
with (Bβ(θ) ∩ Fr ) ⊂ Fr yields

int(Bβ(θ) ∩ Fr ) ⊂ int(Fr ) = ∅ ∀r ∈ Q. (27)

We see that (26) and (27) contradict the Baire category theorem, since Q is countable, apply
Lemma 8 with Fk as suitably enumerated Bβ(θ) ∩ Fr . Thus, (25) holds.

Changing the direction of rotation if necessary, and using the fact that our rotations are 2π -
periodic, we can assume that 0 < ro < 1.

Let ξ ∈ int(Fro). Then, since ξ ∉ Σ , and fe = ge on S2, fe is not a constant function of
ξ⊥. We will show that the last statement is impossible, thus getting a contradiction. The idea is
to use Lemma 10 (since Fro ⊆ Fro we can apply it with α = ro) to show the existence of an
uncountable family of disjoint spherical X fe(w)-figures, w ∈ ξ⊥, and then to use the fact that
such family does not exist.

Define

M = min
w∈ξ⊥

fe(w), M = max
w∈ξ⊥

fe(w).

Since, by assumption, fe is not constant on ξ⊥, the interval [M,M] is of capacity continuum. By
the intermediate value theorem, for every y ∈ [M,M] there exists w ∈ ξ⊥ such that fe(w) = y.
Denote By = {w ∈ ξ⊥

: fe(w) = y} and let wy be any fixed element of By . Define

A = {wy}y∈[M,M] ⊂ ξ⊥.

Since between elements of the sets A and [M,M] there is a one-to-one correspondence, we see
that the capacity of A is continuum as well.

By (21) of Lemma 10 (with α = ro) ∀w ∈ ξ⊥
∃X fe(w), and we define the set

B = {X fe(wy)}y∈[M,M]

of all spherical X -figures with centers at wy ∈ A. This set is again of capacity continuum since
there is a one-to-one correspondence between the X -figures and their centers. Moreover, due
to the fact that on each X fe(wy)-figure the function fe takes a constant value fe(wy), and
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fe(wy1) ≠ fe(wy2), provided y1 ≠ y2, (we chose the unique wy from each By), we see that
all X -figures from B are pairwise disjoint.

Thus, if fe ≠ const on ξ⊥, ∃B, which is an uncountable family of disjoint X -figures. It
remains to show that

B does not exist. (28)

To show (28), we will use Lemma 10 and some elementary geometry.
We observe at first, that we can assume that all vertices of all X ∈ B are located on the paral-

lels P±,δ(ξ) := {θ ∈ S2
: θ · ξ = ±δ} for some small δ > 0. Indeed, by Lemma 10 we know that

one of the arcs of each of the figures is orthogonal to ξ⊥ and by the definition of the X -figure
we know that the angle between the arcs is in (0, π4 ). Therefore, using the fact that (by (22) of
Lemma 10) all figures are rotations of each other around ξ , and considering the family

B∗
:= {X fe(wy) ∩ Eδ(ξ)}y∈[M,M]

instead of B, Eδ(ξ) := {θ ∈ S2
: |θ · ξ | ≤ δ}, it is enough, by taking δ small enough, to show

that B∗ does not exist; the observation follows.
Second, we “separate” points from A. To do this we letwy1 be any element of A. We claim that

d := distS2(wy1 ,A \ {wy1}) = inf
y∈([M,M]\{y1})

distS2(wy1 , wy) > 0. (29)

Assume that d = 0. By the definition of the infimum, for arbitrarily small ϵ > 0, there exist
wy2 ∈ (A \ {wy1}): distS2(wy1 , wy2) < ϵ, and by Lemma 10 we know that X fe(wy1 )

, X fe(wy2 )

are rotations of each other. We can also assume, that the figure X fe(wy2 )
is obtained by a counter-

clockwise rotation of X fe(wy1 )
, (the case of the clockwise rotation is similar). Now, consider an

auxiliary spherical X -figure, Xa , centered at w ∈ ξ⊥, obtained by a counterclockwise rotation of
X fe(wy1 )

around ξ such that the upper left vertex of Xa is the upper right vertex of X fe(wy1 )
, (the

parallels P±,δ(ξ) are invariant under the rotation, so the vertices of Xa are on P±,δ(ξ)). Since the
angle between arcs in our X -figures is positive, we have distS2(wy1 , w) > 0, and wy1 , wy2 must
satisfy

ϵ > distS2(wy1 , wy2) ≥ distS2(wy1 , w), (30)

(otherwise, by the choice of Xa , and the fact that the vertices of the figures X fe(wy1 )
, X fe(wy2 )

are
on P±,δ(ξ), we have X fe(wy1 )

∩X fe(wy2 )
≠ ∅). But we could pick ϵ such that ϵ < distS2(wy1 , w),

which contradicts (30).
Thus, d > 0, and we have a disjoint uncountable family of sub-arcs of ξ⊥ centered at wy ,

each of length d
5 . This is impossible, since ξ⊥ is of finite length, and (28) follows.

We see that our assumption that fe is not constant on ξ⊥ (which was a consequence of the
assumption int(Fro) ≠ ∅) is wrong, and int(Fro) = ∅. Hence, (24) is impossible. This finishes
the proof of Lemma 12. �

Finally, by Lemmata 11 and 12 we have F = ∅, and the proof of Lemma 2 is finished.

6. Concluding remarks

We start with some remarks about analogues of Theorems 1–3 in the two-dimensional case. In
this case ξ⊥ consists of a pair of antipodal points on S1, and the action of the group of rotations
SO(2) on ξ⊥ is reduced to a reflection.
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An analogue of Theorem 1 (n = 2). Let f and g be two continuous functions on S1 such that
for every ξ ∈ S1 we have f (θ) = g(θ) or f (θ) = g(−θ) for every θ ∈ ξ⊥. Then it is not true
that f (θ) = g(θ) or f (θ) = g(−θ) for all θ ∈ S1.

To show this, we divide S1 into four open arcs A j of equal length such that A1 = −A3, A2 =

−A4, and
4

j=1 |A j | = 2π . Then, we define

f = f1χA1 − f2χA2 − f3χA3 + f4χA4 ,

g = f1χA1 + f2χA2 − f3χA3 − f4χA4 .

Here χA j are the characteristic functions of the corresponding arcs, and f j are continuous func-
tions on S1 that are positive inside A j , vanishing at their ends, and f2, f4 : f2(θ)χA2(θ) =

f4(−θ)χA4(−θ)∀θ ∈ A2.
By definition, we have f = g on A1 ∪ A3 and f (θ) = g(−θ)∀θ ∈ A2 ∪ A4, since A4 = −A2.

On the other hand, we see that f = g does not hold, since f (θ) = −g(θ)∀θ ∈ A2. Moreover,
since A3 = −A1, A4 = −A2, we have

g(−θ) = f1(−θ)χA1(−θ)+ f2(−θ)χA2(−θ)− f3(−θ)χA3(−θ)− f4(−θ)χA4(−θ)

= − f3(−θ)χA1(θ)− f4(−θ)χA2(θ)+ f1(−θ)χA3(θ)+ f2(−θ)χA4(θ).

Since f1, f3 are positive on A1, A3,− f3(−θ)χA1(θ) ≠ f1(θ)χA1(θ), and f (θ) = g(−θ) for all
θ ∈ S1 does not hold either.

Analogues of Problems 1 and 2 in the case n = 2 are known to have a negative answer as
well.

An analogue of Problem 1 (n = 2). Suppose that K and L are convex bodies in R2 and let
H = H(ξ) be a one-dimensional subspace of R2 containing ξ⊥. If K |H(ξ) is congruent to
L|H(ξ) for all ξ ∈ S1, does it follow that K is a translate of ±L?

Since the projections are segments, the congruence of the projections is reduced to a
translation. Moreover, due to the fact that for every θ ∈ ξ⊥ we have

length(K |H) = hK (θ)+ hK (−θ) = hL(θ)+ hL(−θ) = length(L|H),

to construct a counterexample it is enough to consider a body K of constant width that is not a
disc, i.e., K such that hK (θ)+ hK (−θ) = 2w∀θ ∈ S1, but hK ≢ w, and the disc L of radius w;
see [1, Section 15, p. 135], and [2, p. 109].

An analogue of Problem 2 (n = 2). Suppose that K and L are convex bodies in R2 and let
H = H(ξ) be a one-dimensional subspace of R2 containing ξ⊥. If K ∩ H(ξ) is congruent to
L ∩ H(ξ) for all ξ ∈ S1, does it follow that K is a translate of ±L?

We observe that for every θ ∈ ξ⊥,

length(K ∩ H) = ρK (θ)+ ρK (−θ) = ρL(θ)+ ρL(−θ) = length(L ∩ H),

and for a counterexample one can take a plane equichordal body K that is not a disc, i.e., K such
that ρK (θ) + ρK (−θ) = 2w∀θ ∈ S1, but ρK ≢ w, and the disc L of radius w; see [2, p. 255,
Theorem 6.3.2, and p. 276].
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Finally, we would like to mention some open questions.

1. Let f and g be two continuous functions on S3, and let their restrictions to any two-dimen-
sional great sub-sphere E of S3 coincide after some rotation φE ∈ SO(3) of this sphere,
f (φE (θ)) = g(θ)∀θ ∈ E . Is it true that f (θ) = g(θ) or f (θ) = g(−θ) for all θ ∈ S3?
Some results in this direction are implicitly contained in [5, Chapter 3].

2. Is it possible to relax the continuity assumption in Theorem 1, say, to the class of bounded
measurable functions on the unit sphere?
This seems to be possible. If not, it would be interesting to find a counterexample to the
analogue of Lemma 1.

3. Let n ≥ 3 and let K and L be two convex bodies in Rn containing the origin in their interior.
Assume also that for every two-dimensional subspace H there exists ψ = ψH ∈ SO(2) such
that the projections of the bodies K and L onto H satisfy ψ(K |H) ⊆ L|H . Is it true that
K ⊆ L or K ⊆ −L?

In this connection, see the results of Daniel Klain, [9], who gave a negative answer to the
following question.

Consider two compact convex subsets K and L of Rn . Suppose that, for a given dimension
1 ≤ d < n, every d-dimensional orthogonal projection (shadow) of L contains a translate of the
corresponding projection of K . Does it follow that the original set L contains a translate of K ?

A question, similar to 3, can be asked about sections of star bodies.
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Appendix. Proof of Lemma 10

The result is a consequence of three propositions. To formulate the first one we will introduce
some notation.

Take any ξ ∈ int(Fα) and any w1 ∈ ξ⊥. Rotating if necessary, we can assume that ξ = (0,
0, 1). Let w2 be a unit vector in ξ⊥ obtained by the rotation of w1 through the angle απ, α ∈

(0, 1), where the direction of the rotation is determined by ξ . We shall assume thatw2 is obtained
fromw1 by a counterclockwise rotation, (the case of the clockwise rotation is similar). We denote
by S(w1, α) ⊂ S2 the spherical circle with center w1 and radius απ in the standard metric of the
unit sphere.

Proposition 1. Let Fα be as in Lemma 10, and let ξ,w1 and w2 be as above. Then, there is an
arc l1 ⊂ S(w1, α), l1 ∋ w2, (see Fig. 1), such that ∀u ∈ l1,

fe(u) = fe(w1). (31)
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Fig. 1. Arc l1 containing w2 ∈ ξ⊥.

Proof. Since ξ ∈ int(Fα), there exist mo ∈ N and a Euclidean ball B 1
mo
(ξ) such that B 1

mo
(ξ) ∩

S2
⊂ int(Fα). Taking m > 2 max( 1

απ
, 1
(1−α)π

,mo) we can assume that B 1
m
(ξ) ∩ S2

⊂ int(Fα).
Let l = lξ = B 1

4m
(ξ) ∩ w⊥

1 be a small arc centered at ξ . For every point v ∈ lξ we consider

v⊥, and observe that w1 belongs to v⊥ for all v ∈ lξ . Next, we define the set

Aξ := S(w1, α) ∩


v∈lξ

v⊥ (32)

consisting of two arcs of S(w1, α), the left one, l1, and the right one, l1, (see Fig. 1). Since
w2 ∈ ξ⊥, distS2(w1, w2) = απ , and ξ ∈ lξ we see that w2 ∈ l1.

It remains to check (31). To this end, we take any u ∈ l1. By the definition of the set Aξ there
exists v ∈ lξ such that u ∈ v⊥. Since v ∈ Fα and distS2(u, w1) = απ , there exists a rotation
φv ∈ SO(2) such that

u = φv(w1). (33)

We remind that by (20) of Lemma 9 we have ge(θ) = fe(θ)∀θ ∈ S2. Hence, (33) and fe(φv(w1))

= ge(w1) yield

fe(u) = fe(φv(w1)) = ge(w1) = fe(w1).

This gives (31) and the proposition follows. �

Proposition 2. Let Fα be as in Lemma 10 and let ξ,w1, w2, l1 be as in Proposition 1. Then
(21) holds.

Proof. We will show that for every w1 ∈ ξ⊥ there exists a spherical X -figure, centered at w1,
that is a union of two arcs l2 ∪ l3 such that (31) holds for all u ∈ l2 ∪ l3. Moreover, we will prove
that l2 is orthogonal to ξ⊥, (see Fig. 2).

The proof is, essentially, the double repetition of the argument from the proof of Proposition 1.
We start with the construction of l3, (see Fig. 2).
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Fig. 2. Arcs l1, l2 and l3.

We take any point w3 ∈ l1, w3 ≠ w2, and denote by η⊥, η ∈ S2, a big circle containing w1
and w3. Since η⊥

∩ ξ⊥
∋ w1, and distS2(u, w1) = απ for all u ∈ l1, it is readily seen that

η⊥
→ ξ⊥ (and η → ξ ) as w3 → w2 along l1. Hence, we can take w3 so close to w2 that

η ∈ B 1
4m
(ξ) ∩ S2, where m is chosen as in the previous proposition.

Now we repeat the part of the proof of the previous proposition with η instead of ξ and w3
instead of w1.

Let lη = B 1
4m
(η) ∩ w⊥

3 be a small arc centered at η. Since η ∈ B 1
4m
(ξ) ∩ S2, we have

lη ⊂ B 1
m
(ξ) ∩ S2

⊂ int(Fα).
For every point v ∈ lη we consider v⊥, and observe that w3 belongs to v⊥ for all v ∈ lη. Next,

similar to (32), we define the set

Aη := S(w3, α) ∩


v∈lη

v⊥, (34)

consisting of two arcs of S(w3, α), the left and the right ones. This time we choose the left one,
this is our l3. Observe that since distS2(w,w3) = απ for all w ∈ l3, distS2(w1, u) = απ for all
u ∈ l1, and distS2(w1, w2) = distS2(w1, w3) = απ,w3 ∈ l1, we have w1 ∈ l3.

We claim that (31) holds for all u ∈ l3.
Take any u ∈ l3. Since l3 ⊂ Aη, (34) yields the existence of v ∈ lη such that u = l3 ∩ v⊥.

Moreover, since v ∈ lη ⊂ Fα and distS2(u, w3) = απ , we have φv(u) = w3. Applying Lemma 9
we have ge(θ) = fe(θ)∀θ ∈ S2, and fe(φv(u)) = ge(u) together with w3 ∈ l1 yield

fe(u) = ge(u) = fe(φv(u)) = fe(w3). (35)

Since u ∈ l3 was arbitrary, we see that fe takes the constant value fe(w3) on l3, and sincew3 ∈ l1,
by Proposition 1, we have (31) for all u ∈ l3.

Now we construct l2. We argue exactly as in the proof of Proposition 1 with w2 instead of w1
and with the choice of the left arc instead of the right one, (see Fig. 2).

Let l = lξ = B 1
4m
(ξ) ∩ w⊥

2 be a small arc centered at ξ . For every point v ∈ lξ we consider

v⊥, and observe that w2 belongs to v⊥ for all v ∈ lξ . Next, we define the set analogous to Aξ
from (32) with w2 instead of w1, consisting of two arcs of S(w2, α). This time we choose the
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left one. This is our l2, (on Fig. 1 imagine w2 instead of w1, andl1 ∋ w1). By construction, l2 is
orthogonal to ξ⊥.

Since w1, w2 ∈ ξ⊥, distS2(w1, w2) = απ , we see that w1 ∈ l2. We claim that (31) holds for
all u ∈ l2.

Take any u ∈ l2. It is readily seen that ∃v ∈ lξ such that u = l2 ∩ v⊥. Hence, ge(θ) =

fe(θ)∀θ ∈ S2 and φv(u) = w2 yield (35) with w2 instead of w3. Since u ∈ l2 was arbitrary, we
see that fe takes the constant value fe(w2) on l2, and since w1 ∈ l2, we have (31) for all u ∈ l2.

Thus, we have constructed the X -figure, which is the union of two arcs l2 ∪ l3 such that
∀u ∈ l2 ∪ l3 (31) holds. This is our X fe(w1). �

Proposition 3. Let Fα be as in Lemma 10 and let ξ,w1, l2 and l3 be as in Proposition 2. Then
we have (22).

Proof. Let θ1 ∈ ξ⊥, θ1 ≠ w1, and let Θ ∈ SO(3) be the rotation leaving ξ fixed such that
Θ(w1) = θ1. Since Θ(B 1

m
(ξ)∩ S2) = B 1

m
(ξ)∩ S2, (where m is as in the proofs of Propositions 1

and 2), we have Θ(B 1
m
(ξ)) ∩ S2

⊂ int(Fα). Hence, we can repeat the proofs of Propositions 1

and 2 with fe ◦ Θ, ge ◦ Θ instead of fe, ge. Since Θ is an isometry on S2 and fe ◦ Θ(w1) = θ1,
we obtain X fe(θ1), satisfying (22), X fe(θ1) = Θ(l2) ∪ Θ(l3). �
Finally, Lemma 10 follows from Propositions 2 and 3.
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