Complex Analysis, Spring 2011.
 Instructor: Dmitry Ryabogin
 Assignment I.

1. Problem 1.

a) When does $a z+b \bar{z}+c=0$ represent a line?
b) Prove that the diagonals of a parallelogram bisect each other and that the diagonals of a rhombus are orthogonal.
c) Show that all circles that pass through a and $1 / \bar{a}$ intersect the circle $|z|=1$ at right angles.

Hint: Observe that $|a|=|1 / \bar{a}|$, and $\arg a=\arg (1 / \bar{a})$. Then use your knowledge from the high school.

2. Problem 2.

a) Let $d\left(z, z^{\prime}\right)$ be the distance between the stereographic projections of z and z^{\prime}, and let Z and Z^{\prime} denote the stereographic projections of z, z^{\prime}, and let N be a north pole. Show that the triangles $N Z Z^{\prime}$ and $N z z^{\prime}$ are similar, and use it to derive

$$
d\left(z, z^{\prime}\right)=\frac{2\left|z-z^{\prime}\right|}{\sqrt{\left(1+|z|^{2}\right)\left(1+\left|z^{\prime}\right|^{2}\right)}}
$$

b) Check that d is a metric on \mathbf{C}.
c) What are stereographic projections of $1,-1, i,(1-i) / \sqrt{2}$?
d) Describe the stereographic projection of the pair of points that are symmetric with respect to: $z=0$, real axis, unit circle (see Problem 1 c)).

3. Problem 3.

a) Let the points $z_{1}, z_{2}, \ldots z_{n}$ be located in the half-plane, with the boundary line passing through the origin. Prove that the points $1 / z_{1}, 1 / z_{2}, \ldots, 1 / z_{n}$ have the same property (with respect to what line?).
b) Prove that

$$
z_{1}+z_{2}+\ldots+z_{n} \neq 0, \quad \frac{1}{z_{1}}+\frac{1}{z_{2}}+\ldots+\frac{1}{z_{n}} \neq 0 .
$$

4. Problem 4.

a) The functions

$$
\frac{\operatorname{Re} z}{z}, \quad \frac{z}{|z|}, \quad \frac{\operatorname{Re}\left(z^{2}\right)}{|z|^{2}}, \quad \frac{z \operatorname{Re} z}{|z|}
$$

are defined for $z \neq 0$. Is it possible to define them at 0 in such a way that they would be continuous at this point?
b) Are functions

$$
\frac{1}{1-|z|}, \quad \frac{1}{1+|z|^{2}}
$$

continuous in $(|z|<1)$? Are they uniformly continuous there?
c) Find constants a, b, c for which the function $f(z)=x+a y+i(b x+c y)$ is analytic.
d) Let $z=r(\cos \phi+i \sin \phi)$ and $f(z)=u(r, \phi)+i v(r, \phi)$. Write down the CauchyRiemann equations in polar coordinates.
e) Prove that $w=z R e z$ is differentiable only at $z=0$ and find $w^{\prime}(0)$.

