Complex Analysis, Spring 2011.

Instructor: Dmitry Ryabogin

Assignment X.

1. Problem 1.

a) Map the inside of the circle $r = a \cos \phi$, a > 0, on the inner part of cardioid $\rho = (1 + \cos \theta)/2$;

b) Map the inside of the circle $r = a \cos \phi$, a > 0, on the inner part of the right branch of the lemniscate $\rho = \sqrt{\cos(2\theta)}$;

c) Map |z| < 1 onto the inner part of the cardioid $\rho = A(1 + \cos \theta), A > 0$, in such a way that w(0) = A/8, w'(0) > 0.

2. **Problem 2.**

a) Find the image of |z| < 1 under $w = R(z + mz^2)$, R > 0, $0 \le m \le 1/2$. Find the image of the polar net of z-plane;

b) Find the image of the semicircle |z| < 1, $\Re z > 0$, under $w = z + z^2$;

c) Find the image of |z| < 1 under $w = R(z + z^n/n), R > 0, n \in \mathbf{N};$

d) Find the image of |z| > 1 under $w = R(z + 1/(nz^n)), R > 0, n \in \mathbb{N}$.

3. Problem 3.

a) Map $0 < \arg z < \pi\beta$, $0 < \beta < 2$, with a cut along the arc of a circle |z| = 1 from z = 1 to $z = e^{i\alpha}$, $0 < \alpha < \pi$ onto the upper half-plane;

b) Map |z| < 1, with a cut along the radius [-1, 0] and a segment [a, 1], 0 < a < 1, onto the upper half-plane;

4. Problem 4.

a) Find the image of |z| < 1 under $w = z/(z^2 + 1)$;

b) Find the image of the sector $-\pi/n < \arg z < \pi/n$, |z| < 1, under $w = z/(1+z^n)^{2/n}$, w(z) > 0 for z > 0;

Hint: Consider $z_1 = z^n$, $z_2 = z_1/(1+z_1)^2$, $z_3 = z_2^{1/n}$.

c)* Map the part of the z-plane to the left of the right-hand branch of the hyperbola $x^2 - y^2 = 1$ on a half-plane;

Hint: Consider on one side the mapping of the upper half of the region by $w = z^2$, on the other side the mapping of a quadrant by $w = z^3 - 3z$.