Complex Analysis, Spring 2011.
 Instructor: Dmitry Ryabogin
 Assignment X.

1. Problem 1.

a) Map the inside of the circle $r=a \cos \phi, a>0$, on the inner part of cardioid $\rho=(1+\cos \theta) / 2$;
b) Map the inside of the circle $r=a \cos \phi, a>0$, on the inner part of the right branch of the lemniscate $\rho=\sqrt{\cos (2 \theta)}$;
c) Map $|z|<1$ onto the inner part of the cardioid $\rho=A(1+\cos \theta), A>0$, in such a way that $w(0)=A / 8, w^{\prime}(0)>0$.

2. Problem 2.

a) Find the image of $|z|<1$ under $w=R\left(z+m z^{2}\right), R>0,0 \leq m \leq 1 / 2$. Find the image of the polar net of z-plane;
b) Find the image of the semicircle $|z|<1, \Re z>0$, under $w=z+z^{2}$;
c) Find the image of $|z|<1$ under $w=R\left(z+z^{n} / n\right), R>0, n \in \mathbf{N}$;
d) Find the image of $|z|>1$ under $w=R\left(z+1 /\left(n z^{n}\right)\right), R>0, n \in \mathbf{N}$.

3. Problem 3.

a) Map $0<\arg z<\pi \beta, 0<\beta<2$, with a cut along the arc of a circle $|z|=1$ from $z=1$ to $z=e^{i \alpha}, 0<\alpha<\pi$ onto the upper half-plane;
b) Map $|z|<1$, with a cut along the radius $[-1,0]$ and a segment $[a, 1], 0<a<1$, onto the upper half-plane;

4. Problem 4.

a) Find the image of $|z|<1$ under $w=z /\left(z^{2}+1\right)$;
b) Find the image of the sector $-\pi / n<\arg z<\pi / n,|z|<1$, under $w=z /\left(1+z^{n}\right)^{2 / n}$, $w(z)>0$ for $z>0$;
Hint: Consider $z_{1}=z^{n}, z_{2}=z_{1} /\left(1+z_{1}\right)^{2}, z_{3}=z_{2}^{1 / n}$.
c)* Map the part of the z-plane to the left of the right-hand branch of the hyperbola $x^{2}-y^{2}=1$ on a half-plane;

Hint: Consider on one side the mapping of the upper half of the region by $w=z^{2}$, on the other side the mapping of a quadrant by $w=z^{3}-3 z$.

