1. **Problem 1.**
 a) Compute
 \[\int_{|z|=r} x\,dz \]
 by use of a parameter.
 b) Compute the integral in a) by observing that
 \(x = (z + \bar{z})/2 = (z + r^2/z)/2 \) on the circle.
 c) Compute
 \[\int_{|z|=2} \frac{dz}{z^2 - 1} \]
 for the positive sense of the circle.
 d) Compute
 \[\int_{|z|=1} |z − 1||dz| \]

2. **Problem 2.**
 a) Suppose that \(f(z) \) is analytic on a closed curve \(\gamma \) (i.e., \(f \) is analytic in a region that contains \(\gamma \)). Show that
 \[\int_{\gamma} \overline{f(z)} f'(z)\,dz \]
 is purely imaginary. (The continuity of \(f'(z) \) is taken for granted).
 b) Assume that \(f(z) \) is analytic and satisfies the inequality \(|f(z) - 1| < 1\) in a region \(\Omega \). Show that
 \[\int_{\gamma} \frac{f'(z)}{f(z)}\,dz = 0 \]
 for every closed curve in \(\Omega \). (The continuity of \(f'(z) \) is taken for granted).
 c) If \(P(z) \) is a polynomial and \(C \) denotes the circle \(|z − a| = R\), what is the value of
 \[\int_{C} P(z)\,dz? \]
 Hint: \(-2\pi i R^2 P'(a)\).
3. Problem 3.

a) Let \(f(z) \) be continuous in the domain \(\Omega = \{ z \in \mathbb{C} : |z| \geq R_0, \mathfrak{R}z \geq a \} \), \((a \text{ is a fixed real number})\), and in this domain \(f(z) \to 0 \) uniformly on arcs \(\{ z \in \Omega, |z| = R \} \), as \(z \to \infty \). Prove that for any \(m > 0 \),

\[
\lim_{R \to \infty} \int_{\Gamma_R} e^{imz} f(z) \, dz = 0,
\]

where \(\Gamma_R \) is an arc of the circle \(|z| = R \) in \(z \in \Omega \).

Hint: On the half-arc \(|z| = R, \mathfrak{R}z > 0 \), use \(\sin \theta \geq 2\theta / \pi, 0 \leq \theta \leq \pi/2 \). In the case \(a < 0 \) use the fact that the length of the corresponding arcs tends to \(|a| \) as \(R \to \infty \).

b) Let \(f(z) \) be continuous in the half-plane \(\mathfrak{R}z \geq \sigma \), \((\sigma \text{ is a fixed real number})\), and in this half-plane \(f(z) \to 0 \) uniformly on arcs \(\{ \mathfrak{R}z \geq \sigma, |z| = R \} \), as \(z \to \infty \). Prove that for any \(t < 0 \),

\[
\lim_{R \to \infty} \int_{\Gamma_R} e^{zt} f(z) \, dz = 0,
\]

where \(\Gamma_R \) is an arc of the circle \(|z| = R, \mathfrak{R}z \geq \sigma \). If \(f(z) \) is continuous in \(\mathfrak{R}z \leq \sigma \), then the statement is true, provided \(t > 0 \), and \(\Gamma_R \) is an arc of the circle \(|z| = R, \mathfrak{R}z \leq \sigma \).