Complex Analysis, Spring 2011.
 Instructor: Dmitry Ryabogin
 Assignment XI.

1. Problem 1.

a) Compute

$$
\int_{|z|=r} x d z
$$

by use of a parameter.
b) Compute the integral in a) by observing that $x=(z+\bar{z}) / 2=\left(z+r^{2} / z\right) / 2$ on the circle.
c) Compute

$$
\int_{|z|=2} \frac{d z}{z^{2}-1}
$$

for the positive sense of the circle.
d) Compute

$$
\int_{|z|=1}|z-1||d z|
$$

2. Problem 2.

a) Suppose that $f(z)$ is analytic on a closed curve γ (i. e., f is analytic in a region that contains γ). Show that

$$
\int_{\gamma} \overline{f(z)} f^{\prime}(z) d z
$$

is purely imaginary. (The continuity of $f^{\prime}(z)$ is taken for granted).
b) Assume that $f(z)$ is analytic and satisfies the inequality $|f(z)-1|<1$ in a region Ω. Show that

$$
\int_{\gamma} \frac{f^{\prime}(z)}{f(z)} d z=0
$$

for every closed curve in Ω. (The continuity of $f^{\prime}(z)$ is taken for granted).
c) If $P(z)$ is a polynomial and C denotes the circle $|z-a|=R$, what is the value of $\int_{C} P(z) \overline{d z}$?
Hint: $-2 \pi i R^{2} P^{\prime}(a)$.

3. Problem 3.

a) Let $f(z)$ be continuous in the domain $\Omega=\left\{z \in \mathbf{C}:|z| \geq R_{0}, \Im z \geq a\right\}$, (a is a fixed real number), and in this domain $f(z) \rightarrow 0$ uniformly on $\operatorname{arcs}\{z \in \Omega,|z|=R\}$, as $z \rightarrow \infty$. Prove that for any $m>0$,

$$
\lim _{R \rightarrow \infty} \int_{\Gamma_{R}} e^{i m z} f(z) d z=0
$$

where Γ_{R} is an arc of the circle $|z|=R$ in $z \in \Omega$.
Hint: On the half-arc $|z|=R, \Im z>0$, use $\sin \theta \geq 2 \theta / \pi, 0 \leq \theta \leq \pi / 2$. In the case $a<0$ use the fact that the length of the corresponding arcs tends to $|a|$ as $R \rightarrow \infty$.
b) Let $f(z)$ be continuous in the half-plane $\Re z \geq \sigma,(\sigma$ is a fixed real number $)$, and in this half-plane $f(z) \rightarrow 0$ uniformly on $\operatorname{arcs}\{\Re z \geq \sigma,|z|=R\}$, as $z \rightarrow \infty$. Prove that for any $t<0$,

$$
\lim _{R \rightarrow \infty} \int_{\Gamma_{R}} e^{z t} f(z) d z=0
$$

where Γ_{R} is an arc of the circle $|z|=R, \Re z \geq \sigma$. If $f(z)$ is continuous in $\Re z \leq \sigma$, then the statement is true, provided $t>0$, and Γ_{R} is an arc of the circle $|z|=R, \Re z \leq \sigma$.

