Complex Analysis, Spring 2011.
 Instructor: Dmitry Ryabogin

 Assignment XII.

 Assignment XII.}

1. Problem 1. Compute
a) $\int_{|z-\aleph|=\aleph} \frac{z d z}{z^{4}-1}, \aleph>1 ;$
b) $\int_{|z|=\rho} \frac{|d z|}{|z-a|^{2}}, \quad|a| \neq \rho$,

Hint: make use of the equations $z \bar{z}=\rho^{2}$ and $|d z|=-i \rho \frac{d z}{z}$;

$$
\text { c) } \int_{|z|=5} \frac{z e^{z} d z}{(z-i)^{3}} ; \quad \text { d) } \int_{|z|=1 / 2} z^{n}(1-z)^{m} d z ; \quad n, m \in \mathbf{Z} .
$$

2. Problem 2.

a) Prove that a function which is analytic in the whole plane and satisfies an inequality $|f(z)|<|z|^{n}$ for some n and all sufficiently large $|z|$ reduces to a polynomial.
b) If $f(z)$ is analytic and $|f(z)| \leq M$ for $|z| \leq R$, find an upper bound for $\left|f^{(n)}(z)\right|$ in $|z| \leq \rho<R$.
c) If $f(z)$ is analytic for $|z|<1$ and $|f(z)| \leq 1 /(1-|z|)$, find the best estimate of $\left|f^{(n)}(0)\right|$ that Cauchy's inequality will yield.
d) Show that the successive derivatives of an analytic function at a point can never satisfy $\left|f^{(n)}(z)\right|>n!n^{n}$.

3. Problem 3.

a) According to Liouville's Theorem, a function that is analytic and bounded in the whole plane must reduce to a constant. Give another proof of this Theorem by computing

$$
\int_{|z|=R} \frac{f(z) d z}{(z-a)(z-b)}, \quad|a|<R,|b|<R,
$$

and estimating it for $R \rightarrow \infty$.
b) Let $f(z)$ be analytic in a large disc containing a closed piecewise differentiable curve γ, and let $z_{1}, z_{2}, \ldots, z_{n}, z_{j} \neq z_{k}$ for $j \neq k$, be points inside γ. Prove that the integral

$$
P(z)=\frac{1}{2 \pi i} \int_{\gamma} \frac{f(\xi)}{w_{n}(\xi)} \frac{w_{n}(\xi)-w_{n}(z)}{\xi-z} d \xi, \quad w_{n}(z)=\left(z-z_{1}\right)\left(z-z_{2}\right) \ldots\left(z-z_{n}\right)
$$

is a polynomial of degree $n-1$, and $P\left(z_{j}\right)=f\left(z_{j}\right) \forall j=1, \ldots, n$.
Hint: $\left(w_{n}(\xi)-w_{n}(z)\right) /(\xi-z)$ is a polynomial in z.
4. Problem 4. Let γ be the piecewise differentiable closed curve that does not pass through the point a. Prove that

$$
\frac{1}{2 \pi i} \int_{\gamma} \frac{d z}{z-a} \in \mathbf{Z}
$$

by completing the following steps.
a) Observe formally that

$$
\int_{\gamma} \frac{d z}{z-a}=\int_{\gamma} d \log (z-a)=\int_{\gamma} d \log |z-a|+i \int_{\gamma} d \arg (z-a)
$$

b) Divide γ into a finite number of subarcs such that there exists a single-valued branch of $\arg (z-a)$ on each subarc.
Hint: There exists a small circle around a that does not intersect γ. Use the compactness argument to divide γ into small subarcs with lengths smaller than that one of the circle.

