Complex Analysis, Spring 2011.

Instructor: Dmitry Ryabogin

Assignment XIII.

1. Problem 1.

a) Write Taylor's formula with n = 3 for

$$\aleph) \ f(z) = e^{z \sin z}; \qquad \beth) \ f(z) = (1+z)^z, \qquad \beth) \ f(z) = e^{e^z}.$$

b) Find the order of all zeros of

$$\aleph) \ f(z) = z^2 + 9; \qquad \beth) \ f(z) = z \sin z, \qquad \beth) \ f(z) = (1 - e^z)(z^2 - 4)^3.$$

c) Does there exist a function, analytic in z = 0 and for z = 1/k, k = 1, 2, ..., taking the values

$$\aleph) \ \frac{1}{2}, \ \frac{2}{3}, \ \frac{3}{4}, \ \frac{5}{6}, \ \frac{6}{7}, \ \dots, \ \frac{k}{k+1}, \dots; \qquad \Box) \ \frac{1}{2}, \ \frac{1}{2}, \ \frac{1}{4}, \ \frac{1}{4}, \ \frac{1}{6}, \ \frac{1}{6}, \ \dots, \ \frac{1}{2k}, \ \frac{1}{2k}, \ \frac{1}$$

2. **Problem 2.**

a) If f(z) and g(z) have the algebraic orders h_f and h_g at z = a, show that \aleph) fg has the order $h_f + h_g$, \beth) f/g the order $h_f - h_g$, and \beth) f + g an order which does not exceed max (h_f, h_g) .

b) Show that a function which is analytic in the whole plane and has a nonessential singularity at ∞ reduces to a polynomial.

c) Show that the functions e^z , $\sin z$, and $\cos z$ have essential singularities at ∞ .

3. Problem 3.

a) Show that any function which is meromorphic in the extended plane is rational.

b) Prove that an isolated singularity of f(z) is removable as soon as either $\Re f(z)$ or $\Im f(z)$ is bounded above or below.

Hint: Apply a fractional linear transformation.

c) Show that an isolated singularity of f(z) cannot be a pole of $e^{f(z)}$.

Hint: f and e^f cannot have a common pole (why?). Now apply the Theorem about essential singularities.

4. Problem 4.

a) Prove that

$$I = \int_{0}^{\infty} e^{-\rho^2} d\rho = \frac{\sqrt{\pi}}{2}.$$

Hint: Observe that

$$4I^2 = \int e^{-\rho^2 - r^2} d\rho dr$$

and use the polar coordinates.

b) Evaluate Fresnel's integrals

$$\int_{0}^{\infty} \cos x^2 dx = \int_{0}^{\infty} \sin x^2 dx = \frac{\sqrt{\pi}}{2\sqrt{2}}.$$

Hint: Integrate $f(z) = e^{iz^2}$ over the boundary of

$$\Omega = \{ z \in \mathbf{C} : 0 \le |z| \le R, 0 \le \arg z \le \pi/4 \}$$

and use the reasons similar to those related to Problem 3 a) from Assignment XI.