Complex Analysis，Spring 2011.
 Instructor：Dmitry Ryabogin

 Assignment XIII．

 Assignment XIII．}

1．Problem 1.

a）Write Taylor＇s formula with $n=3$ for

$$
\text { ※) } f(z)=e^{z \sin z} ; \quad \text { 】) } f(z)=(1+z)^{z}, \quad \text { 】) } f(z)=e^{e^{z}}
$$

b）Find the order of all zeros of

$$
\begin{array}{lll}
\text { ๗) } f(z)=z^{2}+9 ; & \text { 乙) } f(z)=z \sin z, & \text { I) } f(z)=\left(1-e^{z}\right)\left(z^{2}-4\right)^{3} .
\end{array}
$$

c）Does there exist a function，analytic in $z=0$ and for $z=1 / k, k=1,2, \ldots$ ，taking the values

$$
\text { ※) } \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{5}{6}, \frac{6}{7}, \ldots, \frac{k}{k+1}, \ldots ; \quad \text { 乙) } \frac{1}{2}, \frac{1}{2}, \frac{1}{4}, \frac{1}{4}, \frac{1}{6}, \frac{1}{6}, \ldots, \frac{1}{2 k}, \frac{1}{2 k}, \ldots ?
$$

2．Problem 2.

a）If $f(z)$ and $g(z)$ have the algebraic orders h_{f} and h_{g} at $z=a$ ，show that $\left.\aleph\right) f g$ has the order $\left.h_{f}+h_{g}, \beth\right) f / g$ the order $h_{f}-h_{g}$ ，and 】）$f+g$ an order which does not exceed $\max \left(h_{f}, h_{g}\right)$ ．
b）Show that a function which is analytic in the whole plane and has a nonessential singularity at ∞ reduces to a polynomial．
c）Show that the functions $e^{z}, \sin z$ ，and $\cos z$ have essential singularities at ∞ ．

3．Problem 3.

a）Show that any function which is meromorphic in the extended plane is rational．
b）Prove that an isolated singularity of $f(z)$ is removable as soon as either $\Re f(z)$ or $\Im f(z)$ is bounded above or below．
Hint：Apply a fractional linear transformation．
c）Show that an isolated singularity of $f(z)$ cannot be a pole of $e^{f(z)}$ ．
Hint：f and e^{f} cannot have a common pole（why？）．Now apply the Theorem about essential singularities．

4．Problem 4.

a）Prove that

$$
I=\int_{0}^{\infty} e^{-\rho^{2}} d \rho=\frac{\sqrt{\pi}}{2}
$$

Hint: Observe that

$$
4 I^{2}=\int_{\mathbf{R}^{2}} e^{-\rho^{2}-r^{2}} d \rho d r
$$

and use the polar coordinates.
b) Evaluate Fresnel's integrals

$$
\int_{0}^{\infty} \cos x^{2} d x=\int_{0}^{\infty} \sin x^{2} d x=\frac{\sqrt{\pi}}{2 \sqrt{2}} .
$$

Hint: Integrate $f(z)=e^{i z^{2}}$ over the boundary of

$$
\Omega=\{z \in \mathbf{C}: 0 \leq|z| \leq R, 0 \leq \arg z \leq \pi / 4\}
$$

and use the reasons similar to those related to Problem 3 a) from Assignment XI.

