Complex Analysis, Spring 2011.

Instructor: Dmitry Ryabogin

Assignment XIV.

1. Problem 1.

a) Find isolated singularities and describe the behavior of the function near ∞ :

$$\aleph) \ \frac{1}{e^z - 1} - \frac{1}{z}; \qquad \beth) \ e^{z/(1-z)}; \qquad \beth) \ \sin\left(\frac{1}{\sin(1/z)}\right).$$

b) Construct examples of functions having in the extended plane only the following singularities: the pole of the order m at 0 and the pole of the order n at ∞ ;

2. Problem 2.

a) Determine explicitly the largest disk about the origin whose image under the mapping $w = z^2 + z$ is one to one.

b) Same problem for $w = e^z$.

c) Apply the representation $f(z) = w_0 + \xi(z)^n$ to $\cos z$ with $z_0 = 0$. Determine $\xi(z)$ explicitly.

d) If f(z) is analytic at the origin and $f'(0) \neq 0$, prove the existence of an analytic g(z) such that $f(z^n) = f(0) + g(z)^n$ in a neighborhood of 0.

3. Problem 3.

a) Show that $|f(z)| \leq 1$ for $|z| \leq 1$ implies

$$\frac{|f'(z)|}{1-|f(z)|^2} \le \frac{1}{1-|z|^2}.$$

b) If f(z) is analytic and $\Im f(z) \ge 0$ for $\Im z > 0$, show that

$$\frac{|f(z) - f(z_0)|}{|f(z) - \overline{f(z_0)}|} \le \frac{|z - z_0|}{|z - \overline{z}_0|}, \qquad \frac{|f'(z)|}{\Im f(z)} \le \frac{1}{y}.$$

c) In a) and b) prove that equality implies that f(z) is a fractional linear transformation.

d) Derive the corresponding inequalities if f(z) maps |z| < 1 into the upper half plane.

e) Prove by use of Schwarz's lemma that every one-to-one conformal mapping of a disk onto another (or a half plane) is given by a fractional linear transformation.

4. Problem 4.

a) Let f be analytic in a square centered at the origin with sides, say, h_1, h_2, h_3, h_4 . Assume that $|f(z)| \leq 1 \ \forall z \in h_j, \ j = 1, 2, 3$, and $|f(z)| \leq 16 \ \forall z \in h_4$. Give the best possible (in your opinion) upper bound for |f(0)|.

b) Let A be a set of functions f analytic in the strip $|\Im z| \le \pi$, and such that $|f(\pm i\pi)| \le 1$. Is it possible to give an upper bound for $\sup |f(0)|$?

 $f \in A$

Hint: Consider e^{e^z} .