Complex Analysis, Spring 2011.

 Instructor: Dmitry Ryabogin

 Instructor: Dmitry Ryabogin
 Assignment II.

1. Problem 1.

a) Describe curves defined by the following equations:
※) $z=t+i / t$; 〕) $z=t^{2}+i t^{4},-\infty<t<\infty ;$ J) $z=-t+i \sqrt{1-t^{2}},-1 \leq t \leq 1$.
b) For a map $w=z^{2}$ find the images of the lines $x=C, y=C, x=y,|z|=R$, $\arg z=\alpha$. Are these curves transformed one-to-one?
c) Find the pre-images (on z-plane) of $u=C, v=C,\left(w=z^{2}=u+i v\right)$.
d) Find the domain where $f(z)=\left|x^{2}-y^{2}\right|+2 i|x y|$ is analytic.

2. Problem 2.

a) If $g(w)$ and $f(z)$ are analytic functions, show that $g(f(z))$ is also analytic.
b) Show that an analytic function cannot have a constant absolute value without reducing to a constant.
c) Prove rigorously that $f(z)$ and $\overline{f(\bar{z})}$ are simultaneously analytic.

3. Problem 3.

a) Find the most general harmonic polynomial of the form $a x^{3}+b x^{2} y+c x y^{2}+d y^{3}$. Determine the conjugate harmonic function and the corresponding analytic function by integration and by the formal method.
b) Prove that the functions $u(z)$ and $u(\bar{z})$ are simultaneously harmonic.
c) Show that a harmonic function satisfies the formal differential equation

$$
\frac{\partial^{2} u}{\partial z \partial \bar{z}}=0
$$

d) Are $|f(z)|, \arg f(z), \ln |f(z)|$ harmonic, provided $f(z)$ is analytic?
e) Let u be harmonic. Is u^{2} harmonic?
4. Problem 4. Following the steps outlined below prove the Lucas's theorem: the smallest convex polygon that contains the zeros of a polynomial $P(z)$ also contains the zeros of the derivative $P^{\prime}(z)$.
a) Observe that it is enough to prove that if all zeros of $P(z)$ lie in a half plane, then all zeros of $P^{\prime}(z)$ lie in the same half plane.
b) To prove a) show at first that

$$
\frac{P^{\prime}(z)}{P(z)}=\sum_{j=1}^{n} \frac{1}{z-\alpha_{j}}
$$

c) Assume that all α_{k} are in the half plane H defined as $\operatorname{Im}(z-a) / b<0$ but a root z of $P^{\prime}(z)$ is not there. To get a contradiction look at $\operatorname{Im}\left(b P^{\prime}(z) / P(z)\right)$. What can you say about $\operatorname{Im}\left(z-\alpha_{k}\right) / b$?

