# Complex Analysis, Spring 2011. Instructor: Dmitry Ryabogin <br> Assignment III. 

## 1. Problem 1.

a) Prove that

$$
\frac{\partial}{\partial \bar{z}}(f g)=\frac{\partial f}{\partial \bar{z}} g+\frac{\partial g}{\partial \bar{z}} f, \quad \frac{\partial}{\partial z}(f g)=\frac{\partial f}{\partial z} g+\frac{\partial g}{\partial z} f
$$

b) Let $f(z)$ and $z f(z)$ be two complex-valued harmonic functions (their real and imaginary parts both satisfy the Laplace equation). Prove that $f$ is analytic.

## 2. Problem 2.

a) Is $e^{-1 /|z|}$ uniformly continuous in $0<|z| \leq 1$ ?
b) Let $f(z)$ be uniformly continuous in $|z|<1$. Prove that for any point $\xi$ on the circle $|z|=1$, and for any sequence $z_{n} \rightarrow \xi,\left|z_{n}\right|<1$, there exists a limit $\lim _{n \rightarrow \infty} f\left(z_{n}\right)$.
c) Prove also that the limit does not depend on the choice of the sequence $\left\{z_{n}\right\}$, and that the function $f$, defined on the boundary as $f(\xi)=\lim _{n \rightarrow \infty} f\left(z_{n}\right)$, is continuous in the closed disc $|z| \leq 1$.
3. Problem 3.
a) Use the method described in class to develop

$$
\frac{z^{4}}{z^{3}-1}
$$

into partial fractions.
b) If $R(z)$ is a rational function of order $n$, how large and how small can the order of $R^{\prime}(z)$ be?

## 4. Problem 4.

a) If $Q$ is a polynomial with distinct roots $\alpha_{1}, \ldots, \alpha_{n}$, and if $P$ is a polynomial of degree $<n$, show that

$$
\frac{P(z)}{Q(z)}=\sum_{k=1}^{n} \frac{P\left(\alpha_{k}\right)}{Q^{\prime}\left(\alpha_{k}\right)\left(z-\alpha_{k}\right)} .
$$

b) Use the above formula to prove that there exists a unique polynomial $P$ of degree $<n$ with given values $c_{k}$ at the points $\alpha_{k}$ (Lagrange's interpolation polynomial).
5. Problem 5. If a rational function is real on $|z|=1$, how are the zeros and the poles situated?

