Complex Analysis, Spring 2011.

Instructor: Dmitry Ryabogin

Assignment III.

1. Problem 1.

a) Prove that

$$\frac{\partial}{\partial \bar{z}}(f\,g) = \frac{\partial f}{\partial \bar{z}}g + \frac{\partial g}{\partial \bar{z}}f, \qquad \frac{\partial}{\partial z}(f\,g) = \frac{\partial f}{\partial z}g + \frac{\partial g}{\partial z}f.$$

b) Let f(z) and zf(z) be two **complex**-valued harmonic functions (their real and imaginary parts both satisfy the Laplace equation). Prove that f is analytic.

2. Problem 2.

a) Is $e^{-1/|z|}$ uniformly continuous in $0 < |z| \le 1$?

b) Let f(z) be uniformly continuous in |z| < 1. Prove that for any point ξ on the circle |z| = 1, and for any sequence $z_n \to \xi$, $|z_n| < 1$, there exists a limit $\lim_{n \to \infty} f(z_n)$.

c) Prove also that the limit does not depend on the choice of the sequence $\{z_n\}$, and that the function f, defined on the boundary as $f(\xi) = \lim_{n \to \infty} f(z_n)$, is continuous in the **closed** disc $|z| \leq 1$.

3. Problem 3.

a) Use the method described in class to develop

$$\frac{z^4}{z^3 - 1}$$

into partial fractions.

b) If R(z) is a rational function of order n, how large and how small can the order of R'(z) be?

4. Problem 4.

a) If Q is a polynomial with distinct roots $\alpha_1, ..., \alpha_n$, and if P is a polynomial of degree < n, show that $P(x) = \frac{n}{2} P(x) = P(x)$

$$\frac{P(z)}{Q(z)} = \sum_{k=1}^{n} \frac{P(\alpha_k)}{Q'(\alpha_k)(z - \alpha_k)}.$$

b) Use the above formula to prove that there exists a unique polynomial P of degree < n with given values c_k at the points α_k (Lagrange's interpolation polynomial).

5. **Problem 5.** If a rational function is real on |z| = 1, how are the zeros and the poles situated?