Complex Analysis, Spring 2011.

Instructor: Dmitry Ryabogin

Assignment IV.

1. Problem 1.

a) Expand $(1-z)^{-m} m$ a positive integer, in powers of z.

b) Expand $\frac{2z+3}{z+1}$ in powers of z-1. What is the radius of convergence?

2. Problem 2.

a) If $\sum a_n z^n$ has radius of convergence R, what is the radius of convergence of $\sum a_n z^{2n}$? of $\sum a_n^2 z^n$?

b) If $f(z) = \sum a_n z^n$, what is $\sum n^3 a_n z^n$?

c) If $\sum a_n z^n$ and $\sum b_n z^n$ have radii of convergence R_1 and R_2 , show that the radius of convergence of $\sum a_n b_n z^n$ is at least R_1, R_2 .

d) If $\lim_{n\to\infty} |a_{n+1}|/|a_n| = R$, prove that $\sum a_n z^n$ has radius of convergence R.

Hint: Consider

$$|a_n| = \frac{|a_n|}{|a_{n-1}|} \frac{|a_{n-1}|}{|a_{n-2}|} \dots \frac{|a_{k+1}|}{|a_k|} |a_k|$$

to show that

$$\lim_{n \to \infty} |a_{n+1}|/|a_n| = R \quad \text{yields} \quad \lim_{n \to \infty} |a_n|^{1/n} = R.$$

3. Problem 3.

a) Find the radius of convergence of the following power series:

$$(\aleph) \sum n^p z^n, \qquad \Box) \sum \frac{z^n}{n!}, \qquad \Box) \sum q^{n^2} z^n (|q| < 1), \qquad \Box) \sum z^{n!}$$

b) Describe the convergence of the series in a) for |z| = 1.

4. Problem 4.

a) For what values of z is

$$\sum_{n=0}^{\infty} \left(\frac{z}{1+z}\right)^n$$

convergent?

b) Same question for

$$\sum_{n=0}^{\infty} \frac{z^n}{1+z^{2n}}$$

Hint: Does there exists any difference between |z| < 1 and |z| > 1?

5. **Problem 5*.** The purpose of this exercise is to prove a weak version of the following Theorem of Levy and Steinitz: If a series $A = z_1 + z_2 + z_3 + ...$ converges, but not absolutely, then there exists a line l such that for every $s \in l$ there exists a permutation $\sigma(n)$ of indices of A, such that the permuted series $A' = a_{\sigma(1)} + a_{\sigma(2)} + a_{\sigma(3)} + ...$ converges to s.

Definition. Let $\{r_n\}$, $\{s_m\}$ be two increasing sequences of natural numbers, such that $r_n < r_{n+1}, s_m < s_{m+1}, r_m \neq s_m \ \forall m, n, \text{ and } \cup_{n,m} (r_n \cup s_m) = \mathbf{N}$. Then two series

$$A_r := z_{r_1} + z_{r_2} + z_{r_3} + \dots$$
 and $A_s := z_{s_1} + z_{s_2} + z_{s_3} + \dots$

are called *complemented parts* of a series $A = z_1 + z_2 + z_3 + \dots$ (In other words, you color the terms of A in red and blue, say).

If a permutation σ , σ : $\mathbf{N} \to \mathbf{N}$, of terms of A does not change the order inside A_r , A_s (if z_{r_m} appears before z_{r_n} and z_{s_m} appears before z_{s_n} for any m, n, m < n, after permutation), then one says that σ moves complemented parts A_r , A_s with respect to each other.

Prove a)- f) and obtain the proof.

a) The series $A_s(A_r)$ is convergent, provided A and $A_r(A_s)$ are convergent. If a permutation σ moves complemented parts A_r , A_s with respect to each other, then the sum $z_{\sigma(1)} + z_{\sigma(2)} + z_{\sigma(3)} + \dots$ remains unchanged (is A).

b) If a real A is convergent, but not absolutely, and if one of the complemented parts, say, A_r diverges to ∞ , then another complemented part, A_s diverges to $-\infty$.

c) If a real A is convergent, but not absolutely, and if all the terms of one of the complemented parts, say, A_r , have the same signs, then, using only the permutations that move the complemented parts, one can obtain any sum for the permuted series.

d) If a series $|z_1| + |z_2| + |z_3| + \dots$ diverges, then there exists a *direction of concentration* α , such that $\forall \epsilon > 0$, the series of absolute values of terms that are located in the angle $\alpha - \epsilon < \arg z < \alpha + \epsilon$ is divergent.

e) If A is convergent, but not absolutely, and if a direction of concentration of A is a positive part of the real axes, prove that one can find $\{r_n\}$ such that $Rez_{r_1} + Rez_{r_2} + Rez_{r_3} + ... \rightarrow \infty$, but $Imz_{r_1} + Imz_{r_2} + Imz_{r_3} + ...$ is convergent.

f) Prove the Theorem of Levy and Steinitz.