Complex Analysis, Spring 2011.
 Instructor: Dmitry Ryabogin
 Assignment IV.

1. Problem 1.

a) Expand $(1-z)^{-m} m$ a positive integer, in powers of z.
b) Expand $\frac{2 z+3}{z+1}$ in powers of $z-1$. What is the radius of convergence?

2. Problem 2.

a) If $\sum a_{n} z^{n}$ has radius of convergence R, what is the radius of convergence of $\sum a_{n} z^{2 n}$? of $\sum a_{n}^{2} z^{n}$?
b) If $f(z)=\sum a_{n} z^{n}$, what is $\sum n^{3} a_{n} z^{n}$?
c) If $\sum a_{n} z^{n}$ and $\sum b_{n} z^{n}$ have radii of convergence R_{1} and R_{2}, show that the radius of convergence of $\sum a_{n} b_{n} z^{n}$ is at least R_{1}, R_{2}.
d) If $\lim _{n \rightarrow \infty}\left|a_{n+1}\right| /\left|a_{n}\right|=R$, prove that $\sum a_{n} z^{n}$ has radius of convergence R.

Hint: Consider

$$
\left|a_{n}\right|=\frac{\left|a_{n}\right|}{\left|a_{n-1}\right|} \frac{\left|a_{n-1}\right|}{\left|a_{n-2}\right|} \ldots \frac{\left|a_{k+1}\right|}{\left|a_{k}\right|}\left|a_{k}\right|
$$

to show that

$$
\lim _{n \rightarrow \infty}\left|a_{n+1}\right| /\left|a_{n}\right|=R \quad \text { yields } \quad \lim _{n \rightarrow \infty}\left|a_{n}\right|^{1 / n}=R
$$

3. Problem 3.

a) Find the radius of convergence of the following power series:
«) $\sum n^{p} z^{n}$,
乙) $\sum \frac{z^{n}}{n!}$,
J) $\sum q^{n^{2}} z^{n}(|q|<1)$,
ד) $\sum z^{n!}$.
b) Describe the convergence of the series in a) for $|z|=1$.

4. Problem 4.

a) For what values of z is

$$
\sum_{n=0}^{\infty}\left(\frac{z}{1+z}\right)^{n}
$$

convergent?
b) Same question for

$$
\sum_{n=0}^{\infty} \frac{z^{n}}{1+z^{2 n}}
$$

Hint: Does there exists any difference between $|z|<1$ and $|z|>1$?
5. Problem 5*. The purpose of this exercise is to prove a weak version of the following Theorem of Levy and Steinitz: If a series $A=z_{1}+z_{2}+z_{3}+\ldots$ converges, but not absolutely, then there exists a line l such that for every $s \in l$ there exists a permutation $\sigma(n)$ of indices of A, such that the permuted series $A^{\prime}=a_{\sigma(1)}+a_{\sigma(2)}+a_{\sigma(3)}+\ldots$ converges to s.

Definition. Let $\left\{r_{n}\right\},\left\{s_{m}\right\}$ be two increasing sequences of natural numbers, such that $r_{n}<r_{n+1}, s_{m}<s_{m+1}, r_{m} \neq s_{m} \forall m, n$, and $\cup_{n, m}\left(r_{n} \cup s_{m}\right)=\mathbf{N}$. Then two series

$$
A_{r}:=z_{r_{1}}+z_{r_{2}}+z_{r_{3}}+\ldots \quad \text { and } \quad A_{s}:=z_{s_{1}}+z_{s_{2}}+z_{s_{3}}+\ldots
$$

are called complemented parts of a series $A=z_{1}+z_{2}+z_{3}+\ldots$. (In other words, you color the terms of A in red and blue, say).
If a permutation $\sigma, \sigma: \mathbf{N} \rightarrow \mathbf{N}$, of terms of A does not change the order inside A_{r}, A_{s} (if $z_{r_{m}}$ appears before $z_{r_{n}}$ and $z_{s_{m}}$ appears before $z_{s_{n}}$ for any $m, n, m<n$, after permutation), then one says that σ moves complemented parts A_{r}, A_{s} with respect to each other.
Prove a)- f) and obtain the proof.
a) The series $A_{s}\left(A_{r}\right)$ is convergent, provided A and $A_{r}\left(A_{s}\right)$ are convergent. If a permutation σ moves complemented parts A_{r}, A_{s} with respect to each other, then the sum $z_{\sigma(1)}+z_{\sigma(2)}+z_{\sigma(3)}+\ldots$ remains unchanged (is A).
b) If a real A is convergent, but not absolutely, and if one of the complemented parts, say, A_{r} diverges to ∞, then another complemented part, A_{s} diverges to $-\infty$.
c) If a real A is convergent, but not absolutely, and if all the terms of one of the complemented parts, say, A_{r}, have the same signs, then, using only the permutations that move the complemented parts, one can obtain any sum for the permuted series.
d) If a series $\left|z_{1}\right|+\left|z_{2}\right|+\left|z_{3}\right|+\ldots$ diverges, then there exists a direction of concentration α, such that $\forall \epsilon>0$, the series of absolute values of terms that are located in the angle $\alpha-\epsilon<\arg z<\alpha+\epsilon$ is divergent.
e) If A is convergent, but not absolutely, and if a direction of concentration of A is a positive part of the real axes, prove that one can find $\left\{r_{n}\right\}$ such that $R e z_{r_{1}}+\operatorname{Re} z_{r_{2}}+$ $\operatorname{Re} z_{r_{3}}+\ldots \rightarrow \infty$, but $\operatorname{Im} z_{r_{1}}+\operatorname{Im} z_{r_{2}}+\operatorname{Im} z_{r_{3}}+\ldots$ is convergent.
f) Prove the Theorem of Levy and Steinitz.

